
? SECTION 3.9 MANAG ING ROUNDING ERROR 203

hCompute tangents of boundary facei ?⌘ ???

S = pRing[valence - 1] - pRing[0];

if (valence == 2)

T = Vector3f(pRing[0] + pRing[1] - 2 * vertex->p);

else if (valence == 3)

T = pRing[1] - vertex->p;

else if (valence == 4) // regular

T = Vector3f(-1 * pRing[0] + 2 * pRing[1] + 2 * pRing[2] +

-1 * pRing[3] + -2 * vertex->p);

else {

Float theta = Pi / float(valence-1);

T = Vector3f(std::sin(theta) * (pRing[0] + pRing[valence - 1]));

for (int k = 1; k < valence-1; ++k) {

Float wt = (2 * std::cos(theta) - 2) * std::sin((k) * theta);

T += Vector3f(wt * pRing[k]);

}

T = -T;

}

Finally, the fragment hCreate triangle mesh from subdivision meshi creates
the triangle mesh object and adds it to the refined vector passed to the
LoopSubdiv::Refine() method. We won’t include it here, since it’s just a straight-
forward transformation of the subdivided mesh into an indexed triangle mesh.

? 3.9 MANAGING ROUNDING ERROR

Thus far, we’ve been discussing ray–shape intersection algorithms purely with
respect to the mathematics of their operation with the real numbers. This ap-
proach has gotten us far, although the fact that computers can only represent
finite quantities and therefore can’t actually represent all of the the real numbers
is important. In place of real numbers, computers use floating-point numbers,
which have fixed storage requirements. However, error may be introduced each
time a floating-point operation is performed, since the result may not be repre-
sentable in the floating-point numbers.

The accumulation of this error means that computed ray–shape intersection
points may be above or below the actual surface. This leads to a problem: when
new rays are traced starting from computed intersection points for shadow rays
and reflection rays, if the ray origin is below the actual surface, we may find an
incorrect re-intersection with the surface. Conversely, if the origin is too far above
the surface, shadows and reflections may appear detached. (See Figure 3.31.)

Typical practice to address this issue in ray tracing is to o↵set spawned rays
by a fixed “epsilon” value, ignoring any intersections along the ray p + td closer
than some tmin value. Figure 3.32 shows why this approach requires fairly high
tmin values to work e↵ectively: if the spawned ray is fairly oblique to the surface,
incorrect ray intersections may occur quite some distance from the ray origin.
Unfortunately, large tmin values cause ray origins to be relatively far from the

204 SHAPES CHAPTER 3

Figure 3.31: Geometric settings that cause the errors seen in Figure ???. The incident ray on
the left intersects the green surface. On the left, the computed intersection point (black circle) is slightly
below the surface and a too-low “epsilon” o↵setting the origin of the shadow ray leads to an incorrect self-
intersection, as the shadow ray origin (white circle) is still below the surface; thus the light is incorrectly
determined to be occluded. On the right a too-high “epsilon” causes a valid intersection to be missed.

Figure 3.32: If the computed intersection point (filled circle) is below the surface and the spawned ray is
oblique, incorrect re-intersections may occur some distance from the ray origin (open circle). If a minimum
t value along the ray is used to discard nearby intersections, a relatively large tmin is needed to handle
oblique rays well.

original intersection points, which in turn can cause loss of fine detail in shadows
and reflections.

In this section, we’ll introduce the ideas underlying floating-point arithmetic and
describe techniques for analyzing the error in floating-point computations. We’ll
then apply these methods to the ray–shape algorithms introduced earlier in this
chapter and show how to compute ray intersection points with bounded error,
which in turn allows us to conservatively position ray origins so that incorrect
self-intersections are never found, while keeping ray origins extremely close to the
actual intersection point. In turn, no “epsilon” values are needed.

3.9.1 FLOATING-POINT ARITHMETIC

Computation must be performed on a finite representation of numbers that fits
in a finite amount of memory; the infinite set of real numbers just can’t be
represented on a computer. One such finite representation is fixed point , where
given a 16-bit integer, for example, one might say that the first 8 bits are used to
represent the whole numbers from 0 to 255, and that the second 8 bits are used to
represent fractions with equal spacing 1/256. With this representation, the pair
of 8-bit numbers (5, 64) would represent the value 5 + 64/256 = 5.25. Fixed-point
numbers can be implemented e�ciently using integer arithmetic operations (a
property that made them popular on early PCs that didn’t support floating-point
computation), but they su↵er from a number of shortcomings; among them, the
maximum number they can represent is limited, and they aren’t able to accurately
represent very small numbers near zero.

An alternative representation for real numbers on computers is floating-point
numbers. These are based on representing numbers with a sign, a significand10,

10 The word “mantissa” is often used in place of significand, though floating-point purists note that “mantissa” has a di↵erent meaning in the

context of logarithms, and thus prefer “significand”. We follow this usage here.

? SECTION 3.9 MANAG ING ROUNDING ERROR 205

art/pha03f02.eps

[not placing]

Figure 3.33: Due to finite floating-point precision and round-o↵ error, when the intersection of a ray
is found with a shape, the computed intersection point may lie slightly above or slightly below the true
intersection point. This can lead to rendering errors when reflected and shadow rays are traced starting
from the computed intersection point, as incorrect self-intersections with the surface may be detected.

and an exponent: essentially, the same representation as scientific notation, but
with a fixed number of digits devoted to significand and exponent. (In the
following, we will assume base-2 digits exclusively.) This representation makes
it possible to represent and perform computations on numbers with a wide range
of magnitudes while using a fixed amount of storage.

Programmers using floating-point arithmetic are generally aware that floating-
point is imprecise; this understanding sometimes leads to a belief that floating-
point arithmetic is unpredictable. In this section we’ll see that floating-point
arithmetic has a carefully-designed foundation that in turn makes it possible to
compute conservative bounds on the error introduced in a particular computation.
For ray tracing calculations, this error is often surprisingly small.

Modern CPUs and GPUs nearly ubiquitously implement a model of floating-
point arithmetic based on a standard promulgated by the Institute of Electrical
and Electronics Engineers (XXXX year cite XXX). (Henceforth when we refer to
floats, we will specifically be referring to 32-bit floating-point numbers as specified
by IEEE 754.) The IEEE 754 technical standard specifies the format of floating-
point numbers in memory as well as specific rules for precision and rounding
of floating-point computations; it is these rules that make it possible to reason
rigorously about the error present in a given floating-point value.

Floating-Point Representation
The IEEE standard specifies that 32-bit floats are represented with a sign bit, 8
bits for the exponent, and 23 bits for the significand. With 8 bits, the exponent
eb ranges from 0 to 255; the actual exponent used, eb, is computed by biasing e:

eb = e� 127.

The significand actually has 24 bits of precision when a normalized floating-
point value is stored. When a number expressed with significand and exponent
is normalized, there are no leading zeros in the significand. In binary, this means
that the leading digit of the significand must be one; in turn, there’s no need to

206 SHAPES CHAPTER 3

store this value explicitly. Thus, the implicit leading one digit with the 23 digits
encoding the fractional part of the significand give a total of 24 bits of precision.

Thus, given a sign s = ±1, significand m, and exponent e, the corresponding
floating-point value is

s⇥ 1.m⇥ 2e�127.

For example, with a normalized significand, the floating-point number 6.5 is
written as 1.1012 ⇥ 22, where the 2 subscript denotes a base-2 value. (If binary
decimals aren’t immediately intuitive, note that the first number to the right of
the decimal contributes 2�1 = 1/2, and so forth.) Thus, we have

(1⇥ 20 + 1⇥ 2�1 + 0⇥ 2�2 + 1⇥ 2�3)⇥ 22 = 1.625⇥ 22 = 6.5.

eb = 2, so e= 129 = 10000012 and m= 101000000000000000000002.

Floats are laid out in memory with the sign bit at the most significant bit of the
32-bit value (with negative signs encoded with a one bit), then the exponent, and
the significand. Thus, for the value 6.5 the binary in-memory representation of
the value is

0 10000001 10100000000000000000000 = 0x40d00000.

Similarly the floating-point value 1.0 has m= 0 . . . 02 and eb = 0, so e= 127 =
011111112 and so its binary representation is:

0 01111111 00000000000000000000000 = 0x3f800000.

This hexadecimal number is a value worth remembering, as it often comes up in
memory dumps when debugging.

An implication of this representation is that the spacing between representable
floats between two powers of two is uniform throughout the range. (It corresponds
to increments of the significand bits by one). In a range [2e, 2e+1], the spacing is

2e�23. (3.5)

Thus, for floating-point numbers between 1 and 2, e= 0, and the spacing between
floating-point values is 2�23 ⇡ 1.19209 . . .⇥ 10�7. This spacing is also referred to
as the magnitude of a unit in last place (“ulp”); note that the magnitude of an
ulp is determined by the floating-point value that it is with respect to—ulps are
relatively larger at numbers with bigger magnitudes than they are at numbers
with smaller magnitudes.

As we’ve described the representation so far, it’s impossible to exactly represent
zero as a floating-point number. This is obviously an unacceptable state of a↵airs,
so the minimum exponent e= 0, or eb =�127 is set aside for special treatment.
With this exponent, the floating-point value is interpreted as not having the
implicit leading one bit in the significand, which means that a significand of all
zero bits results in

s⇥ 0.0 . . . 02 ⇥ 2�127 = 0.

? SECTION 3.9 MANAG ING ROUNDING ERROR 207

Eliminating the leading one significand bit also makes it possible to represent
denormalized numbers: if the leading one was present, then the smallest 32-bit
float would be

1.0 . . . 02 ⇥ 2�127 ⇡ 5.8774718⇥ 10�39.

Without the leading one bit, the minimum value is

0.00 . . . 12 ⇥ 2�126 = 2�126 ⇥ 2�23 ⇡ 1.4012985⇥ 10�45.

Providing some capability to represent these small values can make it possible to
avoid needing to round very small values to zero.

Note that there is both a “positive” and “negative” zero value with this represen-
tation. This is mostly transparent to the programmer. For example, the standard
guarantees that the comparison -0.0 == 0.0 evaluates to true, even though the
in-memory representations of these two values are di↵erent.

The maximum exponent, e= 255, is also reserved for special treatment. There-
fore, the largest regular floating-point value that can be represented with e= 254
or eb = 127 is approximately

3.402823 . . .⇥ 1038.

With eb = 255, if the significand bits are all zero, the value corresponds to
positive or negative infinity, according to the sign bit. Infinite values result when
performing computations like 1/0 in floating-point, for example. No arithmetic
operations with infinity are valid, but in comparisons, positive infinity is larger
than any non-infinite value and similarly for negative infinity.

The MaxFloat and Infinity constants are initialized to be the largest representable
and “infinity” floating-point values, respectively. We make them available in a
separate constant so that code that uses these values doesn’t need to use the
wordy C++ standard library call to get their value.

hGlobal Constantsi ?⌘ ???

static constexpr Float MaxFloat = std::numeric_limits<Float>::max();

static constexpr Float Infinity = std::numeric_limits<Float>::infinity();

With eb = 255, non-zero significand bits correspond to special “not a number”
(NaN) values, which result from operations like taking the square root of a
negative number, trying to compute 0/0, or performing an operation with infinity
as an operand. NaNs propagate through computations: any arithmetic operation
where one of the operands is a NaN itself always returns NaN. Thus, if a NaN
emerges from a long chain of computations, we know that something went awry
somewhere along the way. In debug builds, pbrt has many Assert() statements
that check for NaN values, as we almost never expect them to come up in the

208 SHAPES CHAPTER 3

regular course of events. Any comparison with a NaN value returns false; thus,
checking for x != x serves to check if a value is not a number.11

Utility Routines
The C++ standard library provides a std::isnan() function to check for not-a-
number for float and double types, but because template classes like Bounds2 are
sometimes instantiated with an integer type for their indices, if those functions
were used directly, their assertions to check for NaNs would sometimes try to
check whether an integer value was not-a-number. Though doing so should be
innocuous, it runs afoul of C++ template overloading rules, since it’s unclear
whether the float or double isnan() variant should be used.

Therefore, pbrt provides a custom IsNaN() function that dispatches to std::isnan()

for float and double and returns false otherwise. Fairly arcane C++-isms are
required to do this; here we use functionality from the type_traits header in the
standard library to define two versions of the function, one for integral (i.e. not
floating-point), and one for non-integral (floating-point) types.

hGlobal Inline Functionsi ?⌘ ???

template <typename T>

typename std::enable_if<std::is_integral<T>::value, bool>::type

IsNaN(T val) {

return false;

}

template <typename T>

typename std::enable_if<!std::is_integral<T>::value, bool>::type

IsNaN(T val) {

return std::isnan(val);

}

For certain low-level operations, it can be useful to be able to interpret a floating-
point value in terms of its constituent bits and to convert the bits representing a
floating-point value to an actual float or double.

One natural approach to this would be to take a pointer to a value to be converted
and cast it to a pointer to the other type:

float f = ...;

uint32_t bits = *((uint32_t *)&f);

However, modern versions of C++ specify that it’s illegal to cast a pointer of one
type, float, to a di↵erent type, uint32_t. (This restriction allows the compiler to
optimize more aggressively in its analysis of whether two pointers may point to
the same memory location, which can inhibit storing values in registers.)

11 This is one of a few places where compilers must not perform seemingly obvious and safe algebraic simplifications with expressions that

include floating-point values—such comparisons must not be simplified to false.

? SECTION 3.9 MANAG ING ROUNDING ERROR 209

Another common approach is to use an enum with elements of both types,
assigning to one type and reading from the other:

enum FloatBits {

float f;

uint32_t ui;

};

FloatBits fb;

fb.f = ...;

uint32_t bits = fb.ui;

This, too, is illegal: the C++ standard says that reading from a di↵erent element
of a union than the one last one assigned to is undefined behavior.

These conversions can be properly made using memcpy() to copy from a pointer
to the source type to a pointer to the destination type:

hGlobal Inline Functionsi ?⌘ ???

inline uint32_t FloatToBits(float f) {

uint32_t ui;

memcpy(&ui, &f, sizeof(float));

return ui;

}

hGlobal Inline Functionsi ?⌘ ???

inline float BitsToFloat(uint32_t ui) {

float f;

memcpy(&f, &ui, sizeof(uint32_t));

return f;

}

While a call to the memcpy() function may seem gratuitously expensive to avoid
these issues, in practice good compilers turn this into a no-op and just reinterpret
the contents of the register or memory as the other type. (Versions of these
functions that convert between double and uint64_t are also available in pbrt,
but are similar and are therefore not included here.)

http://randomascii.wordpress.com/2012/01/11/tricks-with-the-floating-point-
format/ has some nice discussion decomposing floats in memory

These conversions can be used to implement functions that bump a floating-point
value up or down to the next greater or next smaller representable floating-
point value. These functions are useful for some conservative rounding operations
that we’ll need in code to follow. Thanks to the specifics of the in-memory
representation of floats, these operations are quite e�cient.

hGlobal Inline Functionsi ?⌘ ???

inline float NextFloatUp(float v) {

hHandle infinity and negative zero for NextFloatUp()i
hAdvance v to next higher floati

}

210 SHAPES CHAPTER 3

There are two important special cases: if v is positive infinity, then this function
just returns v unchanged. Negative zero is skipped forward to positive zero before
continuing on to the code that advances the significand. This step must be
handled explicitly, since the bit patterns for �0.0 and 0.0 aren’t adjacent.

hHandle infinity and negative zero for NextFloatUp()i ?⌘ ???

if (std::isinf(v) && v > 0.)

return v;

if (v == -0.f)

v = 0.f;

Conceptually, given a floating-point value we want to increase the significand by
one, where if the result overflows, the significand is reset to zero and the exponent
is increased by one. Fortuitously, adding one to the in-memory representation of a
float achieves this: because the exponent lies at the high bits above the significand,
adding one to the low bit of the significand will cause a one to be carried all the
way up into the exponent if the significand is all ones and otherwise will advance
to the next higher significand for the current exponent.12 For negative values,
subtracting one from the bit representation advances to the next value.

hAdvance v to next higher floati ?⌘ ???

uint32_t ui = FloatToBits(v);

if (v >= 0.) ++ui;

else --ui;

return BitsToFloat(ui);

The NextFloatDown() function, not included here, follows the same logic, but
e↵ectively in reverse. pbrt also provides versions of these functions for doubles.

Arithmetic Operations
IEEE 754 provides important guarantees about the properties of floating-point
arithmetic: specifically, it guarantees that addition, subtraction, multiplication,
division, and square root give the same results given the same inputs and
that these results are the floating-point number that is closest to the result
of the underlying computation if it had been performed in infinite-precision
arithmetic.13 It is remarkable that this is possible on finite-precision digital
computers at all; one of the achievements in IEEE 754 was the demonstration
that this level of accuracy is possible and can be implemented fairly e�ciently in
hardware.

Using circled operators to denote floating-point arithmetic operations and sqrt

for floating-point square root, these precision guarantees can be written as:

12 These functions are equivalent to std::nextafter(v, Infinity) and std::nextafter(v, -Infinity), but are more e�cient since

they don’t try to handle NaN values or deal with signaling floating-point exceptions.

13 IEEE float allows the user to select one of a number of rounding modes, but we will assume the default—round to nearest even—here.

? SECTION 3.9 MANAG ING ROUNDING ERROR 211

a� b= round(a+ b)

a b= round(a� b)

a⌦ b= round(a ⇤ b)
a↵ b= round(a/b)

sqrt(a) = round(
p
a)

(3.6)

where round(x) indicates the result of rounding a real number to the closest
floating-point value.

This bound on the rounding error can also be represented with an interval of real
numbers: for example, for addition, we can say that the rounded result is within
an interval

a� b= round(a+ b)⇢ (a+ b)(1± ✏)

= [(a+ b)(1� ✏), (a+ b)(1 + ✏)]
(3.7)

for some ✏. The amount of error introduced from this rounding can be no more
than half the floating-point spacing at a+ b—if it was more than half the floating-
point spacing, then it would be possible to round to a di↵erent floating-point
number with less error (Figure 3.34).

For 32-bit floats, we can bound the floating-point spacing at a+ b from above
using Equation (3.5) (i.e. an ulp at that value) by (a+ b)2�23, so half the spacing
is bounded from above by (a+ b)2�24 and so |✏| 2�24. This bound is themachine
epsilon14. For 32-bit floats, ✏m = 2�24 ⇡ 5.960464 . . .⇥ 10�8.

hGlobal Constantsi ?⌘ ???

static constexpr Float MachineEpsilon =

std::numeric_limits<Float>::epsilon() * 0.5;

Thus, we have

a� b= round(a+ b)⇢ (a+ b)(1± ✏m)

= [(a+ b)(1� ✏m), (a+ b)(1 + ✏m)].

Analogous relations hold for the other arithmetic operators and the square root
operator.15

A number of useful properties follow directly from Equation (3.6). For a floating-
point number x,

•1⌦ x= x.
•x↵ x= 1.
•x� 0 = x.
•x x= 0.

14 The C and C++ standards unfortunately define the machine epsilon in their own special way, which is that it is the magnitude of one ulp

above the number 1. For 32-bit float, this value is 2�23, which is twice as large as the machine epsilon as the term is used in numerical

analysis.

15 This bound assumes that there’s no overflow or underflow in the computation; these possibilities can be easily handled (Higham 2002, p. 56),

but aren’t generally important for our application here.

212 SHAPES CHAPTER 3

Figure 3.34: The IEEE standard specifies that floating-point calculations must be implemented as if the
calculation was performed with infinite-precision real numbers and then rounded to the nearest representable
float. Here, an infinite precision result in the real numbers is denoted by a filled dot, with the representable
floats around it denoted by ticks in a number line. We can see that the error introduced by rounding to
the nearest float, �, can be no more than half the spacing between floats.

•2⌦ x and x↵ 2 are exact; no rounding is performed to compute the final
result. More generally, any multiplication by or division by a power of two
gives an exact result (assuming there’s no overflow or underflow).

•x↵ 2i = x⌦ 2�i for all integer i, assuming 2i doesn’t overflow.

All of these properties follow from the principle that the result must be the nearest
floating-point value to the actual result; when the result can be represented
exactly, the exact result must be computed.

Error Propagation
Using the guarantees of IEEE floating-point arithmetic, it is possible to develop
methods to analyze and bound the error in a given floating-point computation.
For more details on this topic, see the excellent book by Higham (2002), as well
as Wilkinson’s earlier classic (1963).16

Two measurements of error are useful in this e↵ort: absolute and relative. If we
perform some floating point computation and get a rounded result ã, we say
that the magnitude of the di↵erence between ã and the result of doing that
computation in the real numbers is the absolute error , �a:

�a = |ã� a|.

Relative error , �r, is the ratio of the absolute error to the precise result:

�r =

����
ã� a

a

����=
����
�a
a

���� , (3.8)

as long as a 6= 0. Using the definition of relative error, we can thus write the
computed value ã as a perturbation of the exact result a:

ã= a± �a = a(1± �r).

As a first application of these ideas, consider computing the sum of four numbers,
a, b, c, and d, represented as floats. If we compute this sum as r = (((a + b) +

c) + d), Equation (3.7) gives us

(((a� b)� c)� d)⇢ ((((a+ b)(1± ✏m)) + c)(1± ✏m) + d)(1± ✏m)

= (a+ b)(1± ✏m)
3 + c(1± ✏m)

2 + d(1± ✏m).

16 Handling denormalized floats in this sort of analysis requires special treatment. We will ignore them in our analysis here, though extending

the analysis to account for them is fairly straightforward (Higham 2002).

? SECTION 3.9 MANAG ING ROUNDING ERROR 213

Because ✏m is small, higher-order powers of ✏m can be bounded by an additional
✏m term, and so we can bound the (1± ✏m)n terms with

(1± ✏m)
n  (1± (n+ 1)✏m).

(As a practical matter, (1± n✏m) almost bounds these terms, since higher powers
of ✏m get very small very quickly, but the above is a fully conservative bound.)

This bound lets us simplify the result of the addition to:

(a+ b)(1± 4✏m) + c(1± 3✏m) + d(1± 2✏m) =

a+ b+ c+ d+ [±4✏m(a+ b)± 3✏mc± 2✏md].

The term in square brackets gives the absolute error: its magnitude is bounded
by

4✏m|a+ b|+ 3✏m|c|+ 2✏m|d|. (3.9)

Thus, if we add four floating-point numbers together with the above parenthe-
sization, we can be certain that the di↵erence between the final rounded result
and the result we would get if we added them with infinite-precision real numbers
is bounded by Equation (3.9); this error bound is easily computed given specific
values of a, b, c, and d.

This is a fairly interesting result; we see that the magnitude of a+ b makes a
relatively large contribution to the error bound, especially compared to d. (This
result gives a sense for why, if adding a large number of floating-point numbers
together, sorting them from small to large magnitudes generally gives a result
with a lower final error than an arbitrary ordering.)

Our analysis here has implicitly assumed that the compiler would generate
instructions according to the expression used to define the sum. Compilers are
required to follow the form of the given floating-point expressions in order to not
break carefully crafted computations that may have been designed to minimize
round-o↵ error. Here again is a case where certain transformations that would be
valid on expressions with integers can not be applied when floats are involved.

What happens if we change the expression to the algebraically equivalent float

r = (a + b) + (c + d)? This corresponds to the floating-point computation

((a� b)� (c� d)).

If we apply the same process of applying Equation (3.7), expanding out terms,
converting higher-order (1± ✏m)n terms to (1± (n+ 1)✏m), we get absolute error
bounds of

3✏m|a+ b|+ 3✏m|c+ d|,

which are lower than the first formulation if |a+ b| is relatively large, but higher
if |d| is relatively large.

This approach to computing error is known as forward error analysis; given
inputs to a computation, we can apply a fairly mechanical process that provides
conservative bounds on the error in the result. The derived bounds in the result
may overstate the actual error—in practice, the signs of the error terms are

214 SHAPES CHAPTER 3

often mixed, so that there is cancellation when they are added.17 An alternative
approach is backward error analysis , which treats the computed result as exact
and provides bounds on perturbations on the inputs that give the same result.
This approach can be more useful then analyzing the stability of a numerical
algorithm, but is less applicable to deriving conservative error bounds on the
geometric computations we’re interested in here.

The conservative bounding of (1± ✏m)n by (1± (n+ 1)✏m) is somewhat unsatis-
fying since it adds a whole ✏m term purely to conservatively bound the sum of
various higher powers of ✏m. Higham (2002, Section 3.1) gives an approach to
more tightly bound products of (1± ✏m) error terms. If we have (1± ✏m)n, it can
be shown that this value is bounded by 1 + ✓n, where

|✓n|
n ✏m

1� n ✏m
, (3.10)

as long as n ✏m < 1 (which will certainly be the case for the calculations we’re
considering.) Note that the denominator of this expression will be just less than
one for reasonable n values, so just barely increases n✏m to achieve a conservative
bound.

We will denote this bound by �n:

�n =
n ✏m

1� n ✏m
.

hGlobal Inline Functionsi ?⌘ ???

inline Float gamma(int n) {

return (n * MachineEpsilon) / (1 - n * MachineEpsilon);

}

Even better, quotients of (1± ✏m)n terms can be bounded with the � function.
Given

(1± ✏m)m

(1± ✏m)n
,

the interval is bounded by (1± �m+n). Thus, � can be used to collect ✏m terms
from both sides of an equality over to one side by dividing them through; this
will be useful in some of the following derivations.

When working with these error intervals, it’s important to remember that because
(1± ✏m) terms represent intervals, canceling them incorrect:

(1± ✏m)m

(1± ✏m)n
6= (1± ✏m)

m�n.

Using the � notation, our bound on the error of the sum of the four values is

|a+ b|�3 + |c|�2 + |d|�1.

17 Some numerical analysts use a rule of thumb that the error in practice is often close to the square root of the forward error bounds, thanks

to the cancellation of error in intermediate results.

? SECTION 3.9 MANAG ING ROUNDING ERROR 215

Given inputs to some computation that themselves carry some amount of error,
it’s instructive to see how this error is carried through various elementary
arithmetic operations. Given two values, a(1± �i) and b(1± �j) that each carry
some accumulated error from earlier operations, consider their product. Using
the definition of ⌦, the result is in the interval:

a(1± �i)⌦ b(1± �j)⇢ ab(1± �i+j+1),

where we’ve used the relationship (1 ± �i)(1 ± �j) ⇢ (1 ± �i+j), which follows
directly from Equation (3.10).

The relative error in this result is bounded by:
����
ab �i+j+1

ab

����= �i+j+1,

and so the final error is thus just roughly (i+ j + 1)/2 ulps at the value of the
product—about as good as we might hope for given the error going into the
multiplication. (The situation for division is similarly good.)

Unfortunately, with addition and subtraction, it’s possible for the relative error
to increase substantially. Using the same definitions of the values being operated
on, consider

a(1± �i)� b(1± �j),

which is in the interval

a(1± �i+1) + b(1± �j+1),

and so the absolute error is bounded by |a|�i+1 + |b|�j+1.

If the signs of a and b are the same, then the absolute error is bounded by
|a + b|�i+j+1 and the relative error is around (i + j + 1)/2 ulps around the
computed value.

However, if the signs of a and b di↵er (or, equivalently, they are the same but
subtraction is performed), then the relative error can be quite high. Consider the
case where a⇡�b: the relative error is

|a|�i+1 + |b|�j+1

a+ b
⇡

2|a|�i+j+1

a+ b
.

The numerator’s magnitude is proportional to the original value |a|, yet is divided
by a very small number, and thus the relative error is quite high. This substantial
increase in relative error is called catastrophic cancellation. Equivalently, we can
have a sense of the issue from the fact that the absolute error is in terms of the
magnitude of |a|, though it’s now in relation to a value much smaller than a.

Running Error Analysis
In addition to working out error bounds algebraically, we can also have the
computer do this work for us as some computation is being performed. This
approach is known as running error analysis. The idea behind it is simple: each
time a floating-point operation is performed, we also have it compute terms that
compute intervals based on Equation (3.6) to compute a running bound on the

216 SHAPES CHAPTER 3

error that has been accumulated so far. While this approach can have higher
runtime overhead than deriving expressions that give error bound ahead of time,
it can be convenient when derivations become unwieldy.

pbrt provides a simple EFloat class, which mostly acts like a regular float but
uses operator overloading to provide all of the regular arithmetic operations on
floats while computing these error bounds.

hEFloat Public Methodsi ?⌘ ???

EFloat() { }

EFloat(float v, float err = 0.f) : v(v), err(err) {

#ifndef NDEBUG

ld = v;

Check();

#endif

}

EFloat maintains a computed value v and the absolute error bound, err.

hEFloat Private Datai ?⌘ ???

float v;

float err;

In debug builds, EFloat also maintains a highly-precise version of v that can
be used as a reference value to compute an accurate approximation of the
relative error. In optimized builds, we’d generally rather not pay the overhead
for computing this additional value.

hEFloat Private Datai ?⌘ ???

#ifndef NDEBUG

long double ld;

#endif // DEBUG

The implementation of the addition operation for this class is essentially an
implementation of the relevant definitions. We have:

(a± �a)� (b± �b) = ((a± �a) + (b± �b))(1± �1)

= a+ b+ [±�a ± �b ± (a+ b)�1 ± �1�a ± �1�b].

And so the absolute error (in brackets) is bounded by

�a + �b + �1(|a+ b|+ �a + �b).

? SECTION 3.9 MANAG ING ROUNDING ERROR 217

hEFloat Public Methodsi ?⌘ ???

EFloat operator+(EFloat f) const {

EFloat r;

r.v = v + f.v;

#ifndef NDEBUG

r.ld = ld + f.ld;

#endif // DEBUG

r.err = err + f.err +

MachineEpsilon * (std::abs(v + f.v) + err + f.err);

return r;

}

The implementations for the other arithmetic operations for EFloat are analogous.

The float value in a EFloat is available via a type conversion operator; it has
an explicit qualifier to require the caller to have an explicit (float) cast to
extract the floating-point value. The requirement to use an explicit cast reduces
the risk of an unintended round-trip from EFloat to Float and back, thus losing
the accumulated error bounds.

hEFloat Public Methodsi ?⌘ ???

explicit operator float() const { return v; }

If a series of computations is performed using EFloat rather than float-typed
variables, then at any point in the computation, the GetAbsoluteError() method
can be called to find a bound on the absolute error of the computed value.

hEFloat Public Methodsi ?⌘ ???

float GetAbsoluteError() const { return err; }

The bounds of the error interval are available via the UpperBound() and
LowerBound()methods. Their implementations use NextFloatUp() and NextFloatDown()

to ensure that the returned values are rounded up and down respectively, ensuring
that the interval is conservative.

hEFloat Public Methodsi ?⌘ ???

float UpperBound() const { return NextFloatUp(v + err); }

float LowerBound() const { return NextFloatDown(v - err); }

In debug builds, method are available to get both the relative error as well as the
precise value maintained in ld.

hEFloat Public Methodsi ?⌘ ???

#ifndef NDEBUG

float GetRelativeError() const { return std::abs((ld - v)/ld); }

long double PreciseValue() const { return ld; }

#endif

pbrt also provides a variant of the Quadratic() function that operates on coe�-
cients that may have error and returns error bounds with the t0 and t1 values.
The implementation is the same as the regular Quadratic() function, just using
EFloat.

218 SHAPES CHAPTER 3

hEFloat Inline Functionsi ?⌘ ???

inline bool Quadratic(EFloat A, EFloat B, EFloat C,

EFloat *t0, EFloat *t1);

3.9.2 CONSERVATIVE RAY–BOUNDS INTERSECTIONS

Floating-point round-o↵ error can cause the ray–bounding box intersection test
to miss cases where a ray actually does intersect the box. While it’s acceptable to
have occasional false positives from ray–box intersection tests, we’d like to never
miss an actual intersection—getting this right is important for the correctness of
the BVHAccel in Section 4.3 so that ray–shape intersections aren’t missed.

The ray–bounding box test introduced in Section 3.1.2 is based on computing a
series of ray–slab intersections to find the parametric tmin along the ray where
the ray enters the bounding box and the tmax where it exits. If tmin < tmax, the
ray passes through the box; otherwise it misses it. With floating-point arithmetic,
there may be error in the computed t values—if the computed tmin value is greater
than tmax purely due to round-o↵ error, the intersection test will incorrectly
return a false result.

XXX check notation vs sec 3.1.2 in the below.

Recall that the computation to find the t value for a ray intersection with a
plane perpendicular to the x axis at a point x is t= (x� ox)/dx. Expressed as a
floating-point computation and applying Equation (3.6), we have

t= (x ox)↵ dx

⇢ (x� ox)

dx
(1± ✏)2,

and so

t(1± �2) =
(x� ox)

dx
.

The di↵erence between the computed result t and the precise result is bounded
by �2|t|.

If we consider the intervals around the computed t values that bound the fully-
precise value of t, then the case we’re concerned with is when the intervals overlap;
if they don’t then the comparison of computed values will give the correct result
(Figure XXX). If the intervals do overlap, it’s impossible to know the actual
ordering of the t values. In this case, increasing tmax by twice the error bound,
2�3tmax, before performing the comparison ensures that we conservatively return
true in this case.

Caption: If the error bounds of the computed tmin and tmax values overlap,
the comparison tmin < tmax may not actually indicate if a ray hit a bounding
box. It’s better to conservatively return true in this case than to miss an actual
intersection. Extending tmax by twice its error bound ensures that the comparison
is conservative.

? SECTION 3.9 MANAG ING ROUNDING ERROR 219

We can now define the fragment for the ray–bounding box test in Section 3.1.2
that makes this adjustment.

hUpdate tFar to ensure robust ray–bounds intersectioni ?⌘ ???

tFar *= 1.f + 2 * gamma(2);

The fragments for the Bounds3::IntersectP() method that also takes one over
the ray direction, hUpdate tMax and tyMax to ensure robust bounds intersectioni
and hUpdate tzMax to ensure robust bounds intersectioni are similar, though they
have a factor of �3 rather than �2 since they multiply by the reciprocal of the ray
direction rather than dividing by it; an analysis similar to the one above shows
that this approach introduces one more �1 error factor in the result.

3.9.3 ROBUST TRIANGLE INTERSECTIONS

The details of the ray–triangle intersection algorithm in Section 3.6.2 were
carefully designed so that no valid intersection would ever be missed due to
floating-point roundo↵ error. Recall that the algorithm is based on transforming
triangle vertices into a coordinate system with the ray’s origin at its origin and
with the ray direction aligned along the +z axis. Although roundo↵ error may be
introduced by transforming the vertex positions to this coordinate system, this
error doesn’t a↵ect the watertightness of the intersection test. (Further, this error
is quite small, so it doesn’t significantly impact the accuracy of the computed
intersection points.)

Given vertices in this coordinate system, the three edge functions defined in
Equation (3.1) are evaluated at the point (0, 0); the corresponding expressions,
Equation (3.2), are quite straightforward.

The key to the robustness of the algorithm is that with floating-point arithmetic,
the edge function evaluations are guaranteed to have the correct sign. In general,
we have

(a⌦ b) (c⌦ d). (3.11)

First, note that if ab = cd, then Equation (3.11) evaluates to exactly zero,
even in floating point. We therefore just need to show that if ab > cd, then
(a⌦ b) (c⌦ d) is never negative. If ab > cd, then (a⌦ b) must be greater than
or equal to (c⌦ d). In turn, their di↵erence must be greater than or equal to
zero. (These properties all follow from the fact that floating-point arithmetic
operations are all rounded to the nearest representable floating-point value.)

If the value of the edge function is zero, then it’s impossible to tell whether it
is exactly zero or whether a small positive negative value has rounded to zero.
In this case, the fragment hFall back to double precision test at triangle edgesi
reevaluates the edge function with double precision; it can be shown that doubling
the precision su�ces to distinguish these cases.

3.9.4 BOUNDING INTERSECTION POINT ERROR

We’ll now apply this machinery for analyzing rounding error to derive conser-
vative bounds on the absolute error in computed ray-shape intersection points,

220 SHAPES CHAPTER 3

Figure 3.35: Shape intersection algorithms compute an intersection point, shown here in the 2D setting
with a filled circle. The absolute error in this point is bounded by �x and �y, giving a small box around the
point. Because these bounds are conservative, we know that the actual intersection point on the surface
(open circle) must lie somewhere within the box.

which allows us to construct bounding boxes that are guaranteed to include an
intersection point on the actual surface (Figure 3.35). These bounding boxes pro-
vide the basis of the algorithm for generating spawned ray origins that will be
introduced in Section 3.9.5.

It’s useful to start by looking at the sources of error in conventional approaches
to computing intersection points. It is common practice in ray tracing to compute
3D intersection points by first solving the parametric ray equation o + td for a
value thit where a ray intersects a surface and then computing the hit point p
with p = o + thitd. If thit carries some error �t, then we can bound the error in
the computed intersection point. Considering the x coordinate, for example, we
have

x= ox � (thit + �t)⌦ dx

⇢ ox � (thit + �t)dx(1± �1)

⇢ ox(1± �1) + (thit + �t)dx(1± �2)

= ox + thitdx + [±ox�1 + �tdx + thitdx�2 + �tdx�2].

The error term (in square brackets), is bounded by

�1|ox|+ �t(1± �2)|dx|+ �2|thitdx|. (3.12)

There are two things to see from Equation (3.12): first, the magnitudes of the
terms that contribute to the error in the computed intersection point (ox, dx, and
tdx) may be quite di↵erent than the magnitude of the intersection point. Thus,
there is a danger of catastrophic cancellation in computing the intersection point’s
value. Second, ray intersection algorithms generally perform tens of floating-point
operations to compute t values, which in turn means that we can expect �t to be
at least of magnitude �nt, with n in the tens. (And possibly much more, due to
catastrophic cancellation.) Each of these may be much larger than the computed
point x.

Together, these factors can lead to relatively large error in the computed inter-
section point. Therefore, we’ll introduce better approaches shortly.

Reprojection: Quadrics
We’d like to reliably compute intersection points on surfaces with just a few
ulps of error rather than the hundreds of ulps of error that intersection points
computed with the parametric ray equation may have. Previously, Woo et al.
suggested using the first intersection point computed as a starting point for a
second ray–plane intersection, for ray–polygon intersections (Woo et al. 1986).

? SECTION 3.9 MANAG ING ROUNDING ERROR 221

Figure 3.36: Re-intersection to improve the accuracy of the computed intersection point.Given a
ray and a surface, an initial intersection point has been computed with the ray equation (filled circle). This
point may be fairly inaccurate due to cancellation error, but can be used as the origin for a second ray–
shape intersection. The intersection point computed from this second intersection (open circle) is much
closer to the surface, though it may be shifted from the true intersection point due to error in the first
computed intersection.

From the bounds in Equation (3.12), we can see why the second intersection point
will be much closer to the surface than the first: the thit value along the second
ray will be quite close to zero, so that the magnitude of the absolute error in
thit will be quite small and thus using this value in the parametric ray equation
will give a point quite close to the surface (Figure 3.36). Further, the ray origin
will have similar magnitude to the intersection point, so the �1|ox| term won’t
introduce much additional relative error.

Although the second intersection point with this approach is much closer to the
plane of the surface, it still su↵ers from error by being o↵set due to error in the
first computed intersection. The farther away the ray origin from the intersection
point (and thus, the larger the absolute error in thit), the larger this error will be.
In spite of this error, the approach has merit: we’re generally better o↵ with a
computed intersection point that is quite close to the actual surface, even if o↵set
from the most accurate possible intersection point than we are with a point that
is some distance above or below the surface (and likely also far from the most
accurate intersection point).

Rather than doing a full re-intersection computation, which may not only be
computationally costly but also will still have error in the computed t value, an
e↵ective approach is to refine computed intersection points by reprojecting them
to the surface. The error bounds in these reprojected points are often remarkably
small.

Consider a ray–sphere intersection: given a computed intersection point (for
example, from the ray equation) p with a sphere at the origin with radius r, we
can reproject the point onto the surface of the sphere by scaling it with the ratio
of the sphere’s radius to the computed point’s distance to the origin, computing
a new point p0 = (x0, y0, z0) with

x0 = x
rp

x2 + y2 + z2
,

and so forth. The floating-point computation is

x0 = x⌦ r ↵ sqrt(x⌦ x� y⌦ y� z⌦ z)

⇢ xr(1± ✏m)2p
x2(1± ✏m)3 + y2(1± ✏m)3 + z2(1± ✏m)2(1± ✏m)

⇢ xr(1± �2)p
x2(1± �3) + y2(1± �3) + z2(1± �2)(1± �1)

222 SHAPES CHAPTER 3

Because x2, y2, and z2 are all positive, the terms in the square root can share
the same � term, and we have

x0 ⇢ xr(1± �2)p
(x2 + y2 + z2)(1± �4)(1± �1)

=
xr(1± �2)p

(x2 + y2 + z2)
p
(1± �4)(1± �1)

⇢ xrp
(x2 + y2 + z2)

(1± �5)

= x0(1± �5).

(3.13)

Thus, the absolute error of the reprojected x coordinate is bounded by �5|x0| (and
similarly for y0 and z0), and is no more than 2.5 ulps from a point on the surface
of the sphere.

Here is the fragment that reprojects the intersection point for the Sphere shape.

hRefine sphere intersection pointi ?⌘ ???

pHit *= radius / Distance(pHit, Point3f(0, 0, 0));

The error bounds follow from Equation (3.13).

hCompute error bounds for sphere intersectioni ?⌘ ???

Vector3f pError = gamma(5) * Abs((Vector3f)pHit);

Reprojection algorithms and error bounds for other quadrics can be defined
similarly: for example, for a cylinder along the z axis, only the x and y coordinates
need to be reprojected, and the error bounds in x and y turn out to be only �3
times their magnitudes.

hRefine cylinder intersection pointi ?⌘ ???

Float hitRad = std::sqrt(pHit.x * pHit.x + pHit.y * pHit.y);

pHit.x *= radius / hitRad;

pHit.y *= radius / hitRad;

hCompute error bounds for cylinder intersectioni ?⌘ ???

Vector3f pError = gamma(3) * Abs(Vector3f(pHit.x, pHit.y, 0.f));

The disk primitive is particularly easy; we just need to set the z coordinate of
the point to lie on the plane of the disk.

hRefine disk intersection pointi ?⌘ ???

pHit.z = height;

In turn, we have a point with zero error; it lies exactly on the surface on the disk.

hCompute error bounds for disk intersectioni ?⌘ ???

Vector3f pError(0., 0., 0.);

Parametric Evaluation: Triangles
XXX fixme numbering from zero... e0, etc

? SECTION 3.9 MANAG ING ROUNDING ERROR 223

Another e↵ective approach to computing precise intersection points is to use the
parametric representation of a shape to compute accurate intersection points. For
example, the triangle intersection algorithm in Section 3.6.2 computes three edge
function values e1, e2 and e3 and reports an intersection if all three have the same
sign. Their values can be used to find barycentric coordinates

bi =
ei

e1 + e2 + e3
.

Attributes vi at the triangle vertices (including the vertex positions) can be
interpolated across the face of the triangle by

v0 = b1v1 + b2v2 + b3v3.

We can show that interpolating the positions of the vertices in this manner gives
a point very close to the surface of the triangle. First consider precomputing the
inverse sum of ei:

d= 1↵ (e1 � e2 � e2)

⇢ 1

(e1 + e2)(1± ✏)2 + e3(1± ✏)
(1± ✏).

Because all ei have the same sign, we can collect the ei terms and conservatively
bound d:

d⇢ 1

(e1 + e2 + e3)(1± ✏)2
(1± ✏)

⇢ 1

e1 + e2 + e3
(1± �3).

Now, considering interpolation of the x coordinate of the position in the triangle
corresponding to the edge function values, we have

x0 = ((e1 ⌦ x1)� (e2 ⌦ x2)� (e3 ⌦ x3))⌦ d

⇢ (e1x1(1± ✏)3 + e2x2(1± ✏)3 + e3x3(1± ✏)2)d(1± ✏)

⇢ (e1x1(1± �4) + e2x2(1± �4) + e3x3(1± �3))d.

Using the bounds on d,

x⇢ e1x1(1± �7) + e2x2(1± �7) + e3x3(1± �6)

e1 + e2 + e3

= b1x1(1± �7) + b2x2(1± �7) + b3x3(1± �6).

Thus, we can finally see that the absolute error in the computed x0 value is in
the interval

±b1x1�7 ± b2x2�7 ± b3x3�7,

which is bounded by

�7(|b1x1|+ |b2x2|+ |b3x3|). (3.14)

(Note that the b3x3 term could have a �6 factor instead of �7, but the di↵erence
between the two is very small, we choose a slightly simpler final expression.)
Equivalent bounds hold for y0 and z0.

224 SHAPES CHAPTER 3

TODO: reconcile: code indexes barycentrics from 0, equations here from 1.

Equation (3.14) lets us bound the error in the interpolated point computed in
Triangle::Intersect().

hCompute error bounds for triangle intersectioni ?⌘ ???

Float xAbsSum = std::abs(b0 * p0.x) + std::abs(b1 * p1.x) +

std::abs(b2 * p2.x);

Float yAbsSum = std::abs(b0 * p0.y) + std::abs(b1 * p1.y) +

std::abs(b2 * p2.y);

Float zAbsSum = std::abs(b0 * p0.z) + std::abs(b1 * p1.z) +

std::abs(b2 * p2.z);

Vector3f pError = gamma(7) * Vector3f(xAbsSum, yAbsSum, zAbsSum);

Other Shapes
For shapes where we may not want to derive reprojection methods and tight
error bounds, running error analysis can be quite useful: we implement all of
the intersection calculations using EFloat instead of Float, compute a thit value,
and use the parametric ray equation to compute a hit point. We can then find
conservative bounds on the error in the computed intersection point via the EFloat
GetAbsoluteError() method.

TODO: is this the source of e.g. cone noise? Test with long double–are the error
bounds legit??

hCompute error bounds for intersection computed with ray equationi ?⌘ ???

EFloat px = ox + tShapeHit * dx;

EFloat py = oy + tShapeHit * dy;

EFloat pz = oz + tShapeHit * dz;

Vector3f pError = Vector3f(px.GetAbsoluteError(), py.GetAbsoluteError(),

pz.GetAbsoluteError());

This approach is used for cones, paraboloids, and hyperboloids in pbrt.

hCompute error bounds for cone intersectioni ?⌘ ???

hCompute error bounds for intersection computed with ray equationi

XXX text about curves

hCompute error bounds for curve intersectioni ?⌘ ???

Vector3f pError(2 * hitWidth, 2 * hitWidth, 2 * hitWidth);

Effect of Transformations
The last detail to attend to in order to bound the error in computed intersection
points is the e↵ect of transformations, which introduce additional rounding error
when they are applied to computed intersection points.

The quadric Shapes in pbrt transform world-space rays into object-space before
performing ray–shape intersections and then transform computed intersection
points back to world space. Both of these transformation steps introduce rounding
error that needs to be accounted for in order to maintain robust bounds around
intersection points.

? SECTION 3.9 MANAG ING ROUNDING ERROR 225

If possible, it’s best to try to avoid coordinate-system transformations of rays and
intersection points. For example, it’s better to transform triangle vertices to world
space and intersect world-space rays with them than to transform rays to object
space and then transform intersection points to world space.18 Transformations
are still useful, for example for the quadrics object instancing, so we’ll show how
to bound the error that they introduce.

We’ll start by considering the error introduced by transforming a point (x, y, z)
that is exact—i.e., without any accumulated error. Given a 4⇥ 4 non-projective
transformation matrix with elements denoted by mi,j, the transformed point x0

is

x0 = ((m0,0 ⌦ x)� (m0,1 ⌦ y))� ((m0,2 ⌦ z)�m0,3)

⇢m0,0x(1± ✏m)
3 +m0,1y(1± ✏m)

3 +m0,2z(1± ✏m)
3 +m0,3(1± ✏m)

2

⇢ (m0,0x+m0,1y +m0,2z +m0,3) + �3(±m0,0x±m0,1y ±m0,2z ±m0,3)

⇢ (m0,0x+m0,1y +m0,2z +m0,3)± �3(|m0,0x|+ |m0,1y|+ |m0,2z|+ |m0,3|).

Thus, the absolute error in the result is bounded by

�3(|m0,0x|+ |m0,1y|+ |m0,2z|+ |m0,3|). (3.15)

Similar bounds follow for the transformed y0 and z0 coordinates.

We’ll use this result to add a method to the Transform class that also returns the
absolute error in the transformed point due to applying the transformation.

hTransform Inline Functionsi ?⌘ ???

template <typename T> inline Point3<T>

Transform::operator()(const Point3<T> &p, Vector3<T> *pError) const {

T x = p.x, y = p.y, z = p.z;

hCompute transformed coordinates from point pti
hCompute absolute error for transformed pointi
if (wp == 1.) return Point3<T>(xp, yp, zp);

else return Point3<T>(xp, yp, zp)/wp;

}

The fragment hCompute transformed coordinates from point pti isn’t included
here; it implements the same matrix/point multiplication as in Section 2.8.

Note that this code is buggy if the matrix is projective and the homogeneous w
coordinate of the projected point is not one; Exercise 3.XXX at the end of the
chapter has you fix this nit.

18 Although rounding-error is introduced when transforming triangle vertices to world space (for example), this error doesn’t add error that

needs to be handled in computing intersection points. In other words, the transformed vertices may represent a perturbed representation of

the scene, but they are the most precise representation available given the transformation.

226 SHAPES CHAPTER 3

hCompute absolute error for transformed pointi ?⌘ ???

T xAbsSum = (std::abs(m.m[0][0] * x) + std::abs(m.m[0][1] * y) +

std::abs(m.m[0][2] * z) + std::abs(m.m[0][3]));

T yAbsSum = (std::abs(m.m[1][0] * x) + std::abs(m.m[1][1] * y) +

std::abs(m.m[1][2] * z) + std::abs(m.m[1][3]));

T zAbsSum = (std::abs(m.m[2][0] * x) + std::abs(m.m[2][1] * y) +

std::abs(m.m[2][2] * z) + std::abs(m.m[2][3]));

*pError = gamma(3) * Vector3<T>(xAbsSum, yAbsSum, zAbsSum);

The result in Equation (3.15) assumes that the point being transformed is exact.
If the point itself has error bounded by �x, �y, and �z, then the transformed x
coordinate is given by:

x0 = (m0,0 ⌦ (x± �x)�m0,1 ⌦ (y ± �y))� (m0,2 ⌦ (z ± �z)�m0,3).

Applying the definition of floating-point addition and multiplication’s error
bounds, we have:

x0 =m0,0(x± �x)(1± ✏)3 +m0,1(y ± �y)(1± ✏)3+

m0,2(z ± �z)(1± ✏)3 +m0,3(1± ✏)2.

Transforming to use �, we can find the absolute error term to be bounded by

(�3 + 1)(|m0,0|�x + |m0,1|�y + |m0,2|�z)+
�3(|m0,0x|+ |m0,1y|+ |m0,2z|+ |m0,3|).

(3.16)

The Transform class also provides an operator() that takes a point and its own ab-
solute error and returns the absolute error in the result, applying Equation (3.16).
The definition is straightforward, so isn’t be included in the text here.

hTransform Public Methodsi ?⌘ ???

template <typename T> inline Point3<T>

operator()(const Point3<T> &p, const Vector3<T> &pError,

Vector3<T> *pTransError) const;

The Transform() class also provides methods to transform vectors and rays,
returning the resulting error. The vector error bound derivations (and thence,
implementations) are very similar to those for points, and so also aren’t included
here.

hTransform Public Methodsi ?⌘ ???

template <typename T> inline Vector3<T>

operator()(const Vector3<T> &v, Vector3<T> *vTransError) const;

template <typename T> inline Vector3<T>

operator()(const Vector3<T> &v, const Vector3<T> &vError,

Vector3<T> *vTransError) const;

YES Exercise: how much error does our bound claim is introduced by multiplying
by an identity matrix? How much is actually introduced? How might you modify
pbrt so that the actual error bound is used instead? Is this likely to be worthwhile?

? SECTION 3.9 MANAG ING ROUNDING ERROR 227

Figure 3.37: Given a computed intersection point (filled circle) with surface normal (arrow) and error
bounds (rectangle), we compute two planes o↵set along the normal that are o↵set just far enough so that
they don’t intersect the error bounds. The points on these planes along the normal from the computed
intersection point give us the origins for spawned rays (open circles); one of the two is selected based on
the ray direction so that the ray won’t pass through the error bounding box. By construction, such rays
can’t incorrectly re-intersect the surface.

This method is use to transform the intersection point and its error bounds in
the Transform::operator() method for SurfaceInteractions.

hTransform p and pError in SurfaceInteractioni ?⌘ ???

ret.p = (*this)(is.p, is.pError, &ret.pError);

3.9.5 ROBUST SPAWNED RAY ORIGINS

Having error bounds around a computed intersection point makes it possible
to position the origins of rays leaving the surface so that they are always on the
right side of the surface so that they don’t incorrectly reintersect it. When tracing
spawned rays leaving the intersection point p, we o↵set their origins enough to
ensure that they are on the boundary of the error cube and thus won’t incorrectly
re-intersect the surface.

Computed intersection points and their error bounds give us a small 3D box that
bounds a region of space. We know that the precise intersection point must be
somewhere inside this box and that thus the surface must pass through the box (at
least enough to present the point where the intersection is). (Recall Figure 3.35.)

In order to ensure that the spawned ray origin is definitely on the right side of the
surface, we move far enough along the normal so that the plane perpendicular to
the normal is outside the error bounding box. For a computed intersection point
at the origin, the plane equation for the plane going through the intersection
point is just

f(x, y, z) = nxx+ nyy + nzz,

where the plane is implicitly defined by f(x, y, z) = 0 and the surface normal is
(nx, ny, nz).

For a point not on the plane, the value of the plane equation f(x, y, z) gives
the o↵set along the normal that gives a plane that goes through the point. We’d
like to find the maximum value of f(x, y, z) for the eight corners of the error
bounding box; if we o↵set the plane plus and minus this o↵set, we have two
planes that don’t intersect the error box that should be (locally) on opposite
sides of the surface, at least at the computed intersection point o↵set along the
normal (Figure 3.37.)

If the eight corners of the error bounding box are given by (±�x,±�y,±�z), then
the maximum value of f(x, y, z) is easily computed:

228 SHAPES CHAPTER 3

d= |nx|�x + |ny|�y + |nz|�z.

Computing spawned ray origins by o↵setting along the surface normal has a few
advantages: assuming that the surface is locally planar (a reasonable assumption,
especially at the very small scale of the intersection point error bounds), moving
along the normal allows us to get from one side of the surface to the other while
moving the shortest distance. In general, minimizing the distance that ray origins
are o↵set is desirable for maintaining shadow and reflection detail.

hGeometry Inline Functionsi ?⌘ ???

inline Point3f OffsetRayOrigin(const Point3f &p, const Vector3f &pError,

const Normal3f &n, const Vector3f &w) {

Normal3f nAbs = Abs(n);

Float d = Dot(nAbs, pError);

Vector3f offset = d * Vector3f(n);

if (Dot(w, n) < 0)

offset = -offset;

Point3f po = p + offset;

hRound o↵set point po away from pi
return po;

}

We also must handle round-o↵ error when computing the o↵set point: when
offset is added to p, the result will in general need to be rounded to the nearest
floating-point value. In turn, it may be rounded down towards p such that the
resulting point is in the interior of the error box rather than in its boundary
(Figure XXXX). Therefore, the o↵set point is rounded away from p here to ensure
that it’s not inside the box.19

Caption: The rounded value of the o↵set point p+offset computed in OffsetRayOrigin()

may end up in the interior of the error box rather than on its boundary, which in
turn introduces the risk of incorrect self intersections if the rounded point is on
the wrong side of the surface. Advancing each coordinate of the computed point
away from p ensures that it is outside of the error box.

Alternatively, the floating-point rounding mode could have been set to round
towards plus or minus infinity (based on the sign of the value). Changing the
rounding mode is generally fairly expensive, so we just shift by one floating-point
value here. This will sometimes cause a value already outside of the error box to
go slightly further outside it, but because the floating-point spacing is so small,
this isn’t a problem in practice.

19 The observant reader may now wonder about the e↵ect of rounding error when computing the error bounds that are passed into this function.

Indeed, these bounds should also be computed with rounding toward positive infinity. We ignore that issue under the expectation that the

additional o↵set of one ulp here will more than cover that error.

? SECTION 3.9 MANAG ING ROUNDING ERROR 229

hRound o↵set point po away from pi ?⌘ ???

for (int i = 0; i < 3; ++i) {

if (offset[i] > 0) po[i] = NextFloatUp(po[i]);

else if (offset[i] < 0) po[i] = NextFloatDown(po[i]);

}

Given the OffsetRayOrigin() function, we can now implement the Interaction

methods that generate rays leaving intersection points.

hInteraction Public Methodsi ?⌘ ???

Ray SpawnRay(const Vector3f &d, int depth = 0) const {

Point3f o = OffsetRayOrigin(p, pError, n, d);

return Ray(o, d, Infinity, time, depth, GetMedium(d));

}

TODO: explain the issue when the receiving point is sampled from a surface...

hInteraction Public Methodsi ?⌘ ???

Ray SpawnRayTo(const Point3f &p2, int depth = 0) const {

Point3f origin = OffsetRayOrigin(p, pError, n, p2 - p);

Vector3f d = p2 - origin;

return Ray(origin, d, 1 - ShadowEpsilon, time, depth, GetMedium(d));

}

hGlobal Constantsi ?⌘ ???

const Float ShadowEpsilon = 0.0001f;

The other variant of SpawnRayTo(), which takes a Interaction is analogous.

Finally, XXX....

hO↵set ray origin to edge of error bounds and compute tMaxi ?⌘ ???

Float lengthSquared = d.LengthSquared();

Float tMax = r.tMax;

if (lengthSquared > 0) {

Float dt = Dot(Abs(d), oError) / lengthSquared;

o += d * dt;

// tMax -= dt;

}

3.9.6 AVOIDING INTERSECTIONS BEHIND RAY ORIGINS

Bounding the error in computed intersection points allows us to compute ray
origins that are guaranteed to be on the right side of the surface so that they ray
doesn’t incorrectly intersect the surface it’s leaving. However, a second source
of rounding error most also be addressed for robust intersections: the error in
parametric t values computed for ray–shape intersections. Rounding error can
lead to an intersection algorithm computing a value t > 0 for the intersection
point even though the t value for the actual intersection is negative (and thus
should be ignored).

230 SHAPES CHAPTER 3

It’s possible to show that some intersection test algorithms always return a t value
with the correct sign; this is the best case, as no further computation is needed to
bound the actual error in the computed t value. For example, consider the ray–
axis-aligned slab computation: t= (x ox)↵ dx. IEEE guarantees that if a > b,
then a b� 0 (and if b < a, then a b 0). To see why this is so, note that if
a > b, then the real number a� b must be greater than zero. When rounded to a
floating-point number, the result must be either zero or a positive float; there’s
no a way a negative float could be the closest floating point number. Second,
floating-point division returns the correct sign; these together guarantee that the
sign of the computed t value is correct. (Or, that t= 0, but this case is fine, since
our test for an intersection is t > 0).)

For shape intersection routines that use EFloat, the computed t value in the end
has an error bound associated with it and no further computation is necessary.
See the definition of the fragment hCheck quadric shape t0 and t1 for nearest
intersectioni in Section 3.2.2.

Triangles
XXX barycentrics edge indexed from 0 now...

EFloat introduces computational overhead that we’d prefer to avoid for more
commonly used shapes where e�cient intersection code is more important. For
these shapes, we can derive e�cient-to-evaluate conservative bounds on the error
in computed t values. We can apply our floating-point error analysis tools to the
computation of t values for more complex intersection routines. The ray–triangle
intersection algorithm in Section 3.6.2 computes a final t value by computing
three edge function values ei and using them to compute a barycentric-weighted
sum of transformed vertex z coordinates, zi:

t=
e1z1 + e2z2 + e3z3

e1 + e2 + e3
(3.17)

hEnsure that computed triangle t is conservatively greater than zeroi ?⌘ ???

hCompute �z term for triangle t error boundsi
hCompute �x and �y terms for triangle t error boundsi
hCompute �e term for triangle t error boundsi
hCompute �t term for triangle t error boundsi
if (t <= deltaT)

return false;

Given a ray r with origin o, direction d and a triangle vertex p, the projected z
coordinate is

z = (1↵ dz)⌦ (pz oz)

Applying the usual approach, we can find that the maximum error in zi for each
of three vertices of the triangle pi is bounded by �3|zi|, and we can thus find a
conservative upper bound for the error in any of the z positions by taking the
maximum of these errors:

�z = �3 max
i

|zi|.

? SECTION 3.9 MANAG ING ROUNDING ERROR 231

hCompute �z term for triangle t error boundsi ?⌘ ???

Float maxZt = MaxComponent(Abs(Vector3f(p0t.z, p1t.z, p2t.z)));

Float deltaZ = gamma(3) * maxZt;

The edge function values are computed as the di↵erence of two products of
transformed x and y vertex positions:

e0 = (x3 ⌦ y2) (y3 ⌦ x2)

e1 = (x1 ⌦ y3) (y1 ⌦ x3)

e2 = (x2 ⌦ y1) (y2 ⌦ x1)

Bounds for the error in the transformed positions xi and yi are

�x = �5(|px � ox|+ |pz � ox|)
�y = �5(|py � oy|+ |pz � oz|).

XXX we’re again taking the maximums right? Do code and equation match?

hCompute �x and �y terms for triangle t error boundsi ?⌘ ???

Float maxX = MaxComponent(Abs(Vector3f(p0t.x, p1t.x, p2t.x)));

Float maxY = MaxComponent(Abs(Vector3f(p0t.y, p1t.y, p2t.y)));

Float maxZ = MaxComponent(Abs(Vector3f(p0t.z, p1t.z, p2t.z)));

Float deltaX = gamma(5) * (maxX + maxZ);

Float deltaY = gamma(5) * (maxY + maxZ);

Taking the maximum error over all three of the vertices, the xi ⌦ yj products in
the edge functions are bounded by

(max
i

|xi|+ �x)(max
i

|yi|+ �y)(1± ✏),

which have a bound on absolute error of

�xy = �2 max
i

|xi|max
i

|yi|+ �y max
i

|xi|+ �x max
i

|yi|+

Dropping the (negligible) higher-order terms of products of � and � terms, the
error bound on the di↵erence of two x and y terms for the edge function is

�e = 2(�2 max
i

|xi|max
i

|yi|+ �y max
i

|xi|+ �x max
i

|yi|).

XXX double check that, in particular for the error from rounding after the
subtraction of terms XXX.

hCompute �e term for triangle t error boundsi ?⌘ ???

Float maxXt = MaxComponent(Abs(Vector3f(p0t.x, p1t.x, p2t.x)));

Float maxYt = MaxComponent(Abs(Vector3f(p0t.y, p1t.y, p2t.y)));

Float deltaE = 2 * (gamma(2) * maxXt * maxYt + deltaY * maxXt +

deltaX * maxYt);

Again bounding error by taking the maximum of ei terms, the error bound for
the computed value of the numerator of t in Equation (3.17) is

�t = 3(�3 max
i

|ei|max
i

|zi|+ �e max
i

|zi|+ �z max
i

|ei|).

232 SHAPES CHAPTER 3

A computed t value (before normalization by the sum of ei) must be greater than
this value for it to be accepted as a valid intersection.

hCompute �t term for triangle t error boundsi ?⌘ ???

Float maxE = MaxComponent(Abs(Vector3f(e0, e1, e2)));

Float deltaT = 3.f * (gamma(3) * maxE * maxZt + deltaE * maxZt +

deltaZ * maxE) * std::abs(invDet);

Although it may seem that we have made a number of choices to compute looser
bounds than we could, in the interests of e�ciency, in practice the bounds on error
in t are extremely small. For a regular scene that fills a bounding box roughly
±10 in each dimension, our t error bounds near ray origins are generally around
10�7.

3.9.7 DISCUSSION

Minimizing and bounding numeric error in other geometric computations (e.g.
partial derivatives of surface positions, interpolated texture coordinates, etc.) is
much less important than it is for the positions of ray intersections. In a similar
vein, the computations involving color and light in physically-based rendering
generally don’t present trouble with respect to round-o↵ error; they generally
involve sums of products of positive numbers (of generally the same magnitude),
so there aren’t generally problems from catastrophic cancellation. Furthermore,
these sums are generally of few enough terms that accumulated error is small; the
variance that is inherent in the Monte Carlo algorithms used for them generally
dwarfs any floating-point error in computing them.

Interestingly enough, we saw an increase of roughly 20% in overall ray-tracing
execution time after replacing pbrt’s old ad-hoc method to avoid incorrect self-
intersections with the method described in this section. (In comparison, rendering
with double-precision floating point causes an increase in rendering time of
roughly 30%.) Profiling shows that very little of the additional time is due
to the additional computation to find error bounds; this is not surprising, as
the incremental computation our method requires is limited—most of the error
bounds are just scaled sums of absolute values of terms that have already been
computed.

The majority of this slowdown is actually due to an increase in ray–object
intersection tests. The reason for this increase in intersection tests was first
identified by XXXX Wächter, p. 30; when ray origins are very close to shape
surfaces, more nodes of intersection acceleration hierarchies must be visited when
tracing spawned rays than if overly loose o↵sets are used and more intersection
tests are performed near the ray origin. Thus, while the reduction in performance
is unfortunate, it is actually a direct result of the greater accuracy of the method;
it is the price to be paid for more accurate resolution of valid nearby intersections.

FURTHER READ ING 233

FURTHER READING

An Introduction to Ray Tracing has an extensive survey of algorithms for ray-
shape intersection (???). Goldstein and Nagel (1971) discussed ray-quadric inter-
sections, and Heckbert (1984) discussed the mathematics of quadrics for graphics
applications in detail, with many citations to literature in mathematics and other
fields. Hanrahan (1983) described a system that automates the process of deriv-
ing a ray intersection routine for surfaces defined by implicit polynomials; his
system emits C source code to perform the intersection test and normal compu-
tation for a surface described by a given equation. Mitchell (1990) showed that
interval arithmetic could be applied to develop algorithms for robustly comput-
ing intersections with implicit surfaces that cannot be described by polynomials
and are thus more di�cult to accurately compute intersections for; more recent
work in this area was done by Knoll et al. (2009). See Moore’s book (1966) for
an introduction to interval arithmetic.

Other notable early papers related to ray–shape intersection include Kajiya’s
work on computing intersections with surfaces of revolution and procedurally
generated fractal terrains (???). Fournier et al.’s paper on rendering procedural
stochastic models (???) and Hart et al.’s paper on finding intersections with
fractals (???) illustrate the broad range of shape representations that can be
used with ray-tracing algorithms.

Kajiya (1982) developed the first algorithm for computing intersections with
parametric patches. Recent work on more e�cient techniques for direct ray
intersection with patches includes papers by Stürzlinger (1998), Martin et al.
(2000), and Roth et al. (2001). Benthin et al. (2004) presented more recent
results and include additional references to previous work. Ramsey et al. (2004)
describe an e�cient algorithm for computing intersections with bilinear patches,
and Ogaki and Tokuyoshi (2011) introduce a technique for directly intersecting
smooth surfaces generated from triangle meshes with per-vertex normals.

An excellent introduction to di↵erential geometry is Gray (1993); Section 14.3 of
that book presents the Weingarten equations. Turkowski (1990a) has expressions
for first and second partial derivatives of a handful of parametric primitives.

The ray–triangle intersection test in Section 3.6 was developed by Woop et al.
(2013). See Möller and Trumbore (1997) for another widely-used ray–triangle
intersection algorithm. A ray–quadrilateral intersection routine was developed
by Lagae and Dutré (2005). Shevtsov et al. (2007a) described a highly optimized
ray–triangle intersection routine for modern CPU architectures and included a
number of references to other recent approaches. An interesting approach for
developing a fast ray–triangle intersection routine was introduced by Kensler and
Shirley (2006): they implemented a program that performed a search across the
space of mathematically equivalent ray–triangle tests, automatically generating
software implementations of variations and then benchmarking them. In the end,
they found an more e�cient ray–triangle routine than had been in use previously.

234 SHAPES CHAPTER 3

Phong and Crow (1975) first introduced the idea of interpolating per-vertex
shading normals to give the appearance of smooth surfaces from polygonal
meshes.

The layout of triangle meshes in memory can have a measurable impact on
performance in many situations. In general, if triangles that are close together in
3D space are close together in memory, cache hit rates will be higher, and overall
system performance will benefit. See Yoon et al. (2005) and Yoon and Lindstrom
(2006) for algorithms for creating cache-friendly mesh layouts in memory.

The curve primitive intersection algorithm in Section 3.7 is based on the approach
developed by Nakamaru and Ohno (2002). Earlier methods for computing ray
intersections with generalized cylinders are also applicable to rendering curves,
though they are much less e�cient (???; ???). The book by Farin (2001) provides
an excellent general introduction to splines, and the blossoming approach to them
was introduced by Ramshaw (1987).

One challenge with rendering thin geometry like hair and fur is that thin geometry
may require many pixel samples to be accurately resolved, which in turn increases
rendering time. van Swaaij (2006) described a system that precomputed voxel
grids to represent hair and fur, storing aggregate information about multiple
hairs in a small region of space for more e�cient rendering. More recently, Qin
et al. (2014) described an approach based on cone tracing for rendering fur, where
narrow cones are traced instead of rays. In turn, all of the curves that intersect a
cone can be considered in computing the cone’s contribution, allowing rendering
with a small number of cones per pixel.

Subdivision surfaces were invented by Doo and Sabin (1978) and Catmull and
Clark (1978). The Loop subdivision method was originally developed by Charles
Loop (1987), although the implementation in pbrt uses the improved rules for
subdivision and tangents along boundary edges developed by Hoppe et al. (1994).
There has been extensive work in subdivision surfaces recently. The SIGGRAPH
course notes give a good summary of the state of the art and also have extensive
references (Zorin et al. 2000). See also Warren’s book on the topic (???). Müller
et al. (2003) described an approach that refines a subdivision surface on demand
for the rays to be tested for intersection with it. (See also Benthin et al. (2007),
for a related approach.)

An exciting development in subdivision surfaces is the ability to evaluate them
at arbitrary points on the surface (???). Subdivision surface implementations like
the one in this chapter are often relatively ine�cient, spending as much time
dereferencing pointers as they do applying subdivision rules. Stam’s approach
also reduces the impact of this problem. Bolz and Schröder (2002) suggest a
much more e�cient implementation approach that precomputes a number of
quantities that make it possible to compute the final mesh much more e�ciently.
More recently, Patney et al. (2009) have demonstrated a very e�cient approach
for tessellating subdivision surfaces on data-parallel throughput processors.

EXERC ISES 235

Higham’s (2002) book on floating-point computation is excellent; it also developes
the �n notation that we have used in Section 3.9. Other good references to this
topic are Wilkinson (1994) and Goldberg (1991).

The incorrect self-intersection problem has been a known problem for ray-tracing
practitioners for quite some time ???. In addition to o↵setting rays by an
“epsilon” at their origin, approaches that have been suggested include ignoring
intersections with the object that was first intersected, “root polishing” ???,
where the computed intersection point is refined to become more numerically
accurate; and using higher-precision floating point representations (e.g. double
instead of float).

Kalra and Barr (1989) and Dammertz and Keller (2006) developed algorithms for
numerically-robust intersections based on recursively subdividing object bound-
ing boxes, discarding boxes that don’t encompass the object’s surface, and
discarding boxes missed by the ray. Both of these approaches are much less e�-
cient than traditional ray–object intersection algorithms as well as the techniques
introduced in Section 3.9.

Salesin et al. (1989) introduced techniques to derive robust primitive operations
for computational geometry that accounted for floating-point round-o↵ error,
and Ize showed how to perform numerically-robust ray–bounding box intersec-
tions (Ize 2013); his approach is implemented in Section 3.9.2. Wächter (2008)
discussed self-intersection issues in his thesis; he suggested recomputing the inter-
section point starting from the initial intersection (root polishing) and o↵setting
spawned rays along the normal by a fixed small fraction of the intersection point’s
magnitude. The approach implemented in this chapter uses his approach of o↵-
setting along the normal, but is based on conservative bounds on the o↵sets
based on the numeric error present in computed intersection points. (As it turns
out, our bounds are generally tighter than Wächter’s while also being provably
conservative.)

EXERCISES

3.1 One nice property of mesh-based shapes like triangle meshes and subdi-
vision surfaces is that the shape’s vertices can be transformed into world
space, so that it isn’t necessary to transform rays into object space be-
fore performing ray intersection tests. Interestingly enough, it is possible
to do the same thing for ray–quadric intersections.

The implicit forms of the quadrics in this chapter were all of the form

Ax2 +Bxy + Cxz +Dy2 + Eyz + Fz2 +G= 0,

where some of the constants A . . . G were zero. More generally, we can
define quadric surfaces by the equation

Ax2 +By2 + Cz2 + 2Dxy + 2Eyz + 2Fxz + 2Gz + 2Hy + 2Iz + J = 0,

