
04 PRIMITIVES AND
INTERSECTION
ACCELERATION

The classes described in the last chapter focus exclusively on representing geometric
properties of 3D objects. Although the Shape class provides a convenient abstraction for
geometric operations such as intersection and bounding, it doesn’t contain enough infor-
mation to fully describe an object in a scene. For example, it is necessary to bind material
properties to each shape in order to specify its appearance. To accomplish these goals,
this chapter introduces the Primitive class and provides a number of implementations.

Shapes to be rendered directly are represented by the GeometricPrimitive class. This class
combines a Shape with a description of its appearance properties. So that the geometric
and shading portions of pbrt can be cleanly separated, these appearance properties are
encapsulated in the Material class, which is described in Chapter 9.

The TransformedPrimitive class handles two more general uses of Shapes in the scene:
shapes with animated transformation matrices and object instancing, which can greatly
reduce the memory requirements for scenes that contain many instances of the same
geometry at different locations (such as the one in Figure 4.1). Implementing each of
these features essentially requires injecting an additional transformation matrix between
the Shape’s notion of world space and the actual scene world space. Therefore, both are
handled by a single class.

This chapter also introduces the Aggregate base class, which represents a container that
can hold many Primitives. pbrt uses this class to implement acceleration structures—
data structures that help reduce the otherwise O(n) complexity of testing a ray for
intersection with all n objects in a scene. Most rays will intersect only a few primitives
and miss the others by a large distance. If an intersection acceleration technique can reject
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Figure 4.1: This ecosystem scene makes heavy use of instancing as a mechanism for compressing the scene’s description. There
are only 1.1 million unique triangles in the scene, although, thanks to object reuse through instancing, the total geometric complexity
is 19.5 million triangles.

whole groups of primitives at once, there will be a substantial performance improvement
compared to simply testing each ray against each primitive in turn. One benefit from
reusing the Primitive interface for these acceleration structures is that pbrt can support
hybrid approaches where an accelerator of one type holds accelerators of other types.

This chapter describes the implementation of three accelerators, one (GridAccel) based
on overlaying a uniform grid over the scene, one (BVHAccel) based on building a hierar-
chy of bounding boxes around objects in the scene, and the last (KdTreeAccel) based on
adaptive recursive spatial subdivision.

4.1 PRIMITIVE INTERFACE AND
GEOMETRIC PRIMITIVES

The abstract Primitive base class is the bridge between the geometry processing and
shading subsystems of pbrt. It inherits from the ReferenceCounted base class, which
automatically tracks how many references there are to an object, freeing its storage when
the last reference goes out of scope. Other classes that store Primitives shouldn’t store
pointers to them, but instead hold a Reference<Primitive>, which ensures that reference
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counts are computed correctly. The Reference<Primitive> class otherwise behaves as if
it was a pointer to a Primitive.

〈Primitive Declarations〉 ≡
class Primitive : public ReferenceCounted {
public:

〈Primitive Interface 185〉
〈Primitive Public Data 185〉

protected:
〈Primitive Protected Data 185〉

};

Like Shapes, Primitives also each have a unique 32-bit identifier. Because a single Shape
may be represented in the scene multiple times due to object instancing, both the shape
and primitive ids are necessary to uniquely identify an instance of a shape in the scene.

〈Primitive Interface〉 ≡ 185

Primitive() : primitiveId(nextprimitiveId++) { }

〈Primitive Public Data〉 ≡ 185

const uint32_t primitiveId;

〈Primitive Protected Data〉 ≡ 185

static uint32_t nextprimitiveId;

Similarly to shape ids, the first primitive id value handed out is one, so that zero can be
reserved to indicate “no primitive.”

〈Primitive Method Definitions〉 ≡
uint32_t Primitive::nextprimitiveId = 1;

Because the Primitive class connects geometry and shading, its interface contains meth-
ods related to both. There are five geometric routines in the Primitive interface, all of
which are similar to a corresponding Shape method. The first, Primitive::WorldBound(),
returns a box that encloses the primitive’s geometry in world space. There are many uses
for such a bound; one of the most important is to place the Primitive in the acceleration
data structures.

〈Primitive Interface〉 +≡ 185

virtual BBox WorldBound() const = 0;

Similarly to the Shape class, all primitives must be able to either determine if a given ray
intersects their geometry or else refine themselves into one or more new primitives. Like
the Shape interface, Primitive has a Primitive::CanIntersect() method so that pbrt can
determine whether the underlying geometry is intersectable or not.

One difference from the Shape interface is that the Primitive intersection methods re-
turn Intersection structures rather than DifferentialGeometry. These Intersection
structures hold more information about the intersection than just the local geometric
information, such as information about the material properties at the hit point.
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Another difference is that Shape::Intersect() returns the parametric distance along the
ray to the intersection in a float * output variable, while Primitive::Intersect() is
responsible for updating Ray::maxt with this value if an intersection is found.

〈Primitive Interface〉 +≡ 185

virtual bool CanIntersect() const;
virtual bool Intersect(const Ray &r, Intersection *in) const = 0;
virtual bool IntersectP(const Ray &r) const = 0;
virtual void Refine(vector<Reference<Primitive> > &refined) const;

The Intersection structure holds information about a ray–primitive intersection, in-
cluding information about the differential geometry of the point on the surface, a pointer
to the Primitive that the ray hit, and its world-to-object-space transformation. It is de-
fined in the files core/intersection.h and core/intersection.cpp.

〈Intersection Declarations〉 ≡
struct Intersection {

〈Intersection Public Methods 484〉
〈Intersection Public Data 186〉

};

〈Intersection Public Data〉 ≡ 186

DifferentialGeometry dg;
const Primitive *primitive;
Transform WorldToObject, ObjectToWorld;
uint32_t shapeId, primitiveId;
float rayEpsilon;

It may be necessary to repeatedly refine a primitive until all of the primitives it has re-
turned are themselves intersectable. The Primitive::FullyRefine() utility method han-
dles this task. Its implementation is straightforward. It maintains a queue of primitives
to be refined (called todo in the following code) and invokes the Primitive::Refine()
method repeatedly on entries in that queue. Intersectable Primitives returned by
Primitive::Refine() are placed in the refined array, while nonintersectable ones are
placed back on the todo list by the Refine() routine.

〈Primitive Method Definitions〉 +≡
void
Primitive::FullyRefine(vector<Reference<Primitive> > &refined) const {

vector<Reference<Primitive> > todo;
todo.push_back(const_cast<Primitive *>(this));
while (todo.size()) {

〈Refine last primitive in todo list 187〉
}

}
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〈Refine last primitive in todo list〉 ≡ 186

Reference<Primitive> prim = todo.back();
todo.pop_back();
if (prim->CanIntersect())

refined.push_back(prim);
else

prim->Refine(todo);

In addition to the geometric methods, a Primitive object has three methods related to
its material properties. The first, Primitive::GetAreaLight(), returns a pointer to the
AreaLight that describes the primitive’s emission distribution, if the primitive is itself a
light source. If the primitive is not emissive, this method should return NULL.

〈Primitive Interface〉 +≡ 185

virtual const AreaLight *GetAreaLight() const = 0;

The other two methods return representations of the light-scattering properties of the
material at the given point on the surface. The first, Primitive::GetBSDF(), returns a BSDF
object (introduced in Section 9.1) that describes local light-scattering properties at the
intersection point. In addition to the differential geometry at the hit point, this method
takes the object-to-world-space transformation and a MemoryArena to allocate memory
for the returned BSDF. Section 9.1.1 discusses the use of the MemoryArena for BSDF memory
allocation in more detail.

The second method, Primitive::GetBSSRDF(), returns a BSSRDF, which describes subsur-
face scattering inside the primitive—light that enters the surface at points far from where
it exits. While subsurface light transport has little effect on the appearance of objects like
metal, cloth, or plastic, it is the dominant light-scattering mechanism for biological ma-
terials like skin, thick liquids like milk, etc. The BSSRDF is used by the subsurface light
transport integrator defined in Section 16.5.

〈Primitive Interface〉 +≡ 185

virtual BSDF *GetBSDF(const DifferentialGeometry &dg,
const Transform &ObjectToWorld, MemoryArena &arena) const = 0;

virtual BSSRDF *GetBSSRDF(const DifferentialGeometry &dg,
const Transform &ObjectToWorld, MemoryArena &arena) const = 0;

4.1.1 GEOMETRIC PRIMITIVES

The GeometricPrimitive class represents a single shape (e.g., a sphere) in the scene. One
GeometricPrimitive is allocated for each shape in the scene description provided by the
user. It is implemented in the files core/primitive.h and core/primitive.cpp.

〈GeometricPrimitive Declarations〉 ≡
class GeometricPrimitive : public Primitive {
public:

〈GeometricPrimitive Public Methods 188〉
private:

〈GeometricPrimitive Private Data 188〉
};
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Each GeometricPrimitive holds a reference to a Shape and its Material. In addition,
because primitives in pbrt may be area light sources, it stores a pointer to an AreaLight
object that describes its emission characteristics (this pointer is set to NULL if the primitive
does not emit light).

〈GeometricPrimitive Private Data〉 ≡ 187

Reference<Shape> shape;
Reference<Material> material;
AreaLight *areaLight;

The GeometricPrimitive constructor initializes these variables from the parameters
passed to it. Its implementation is omitted.

〈GeometricPrimitive Public Methods〉 ≡ 187

GeometricPrimitive(const Reference<Shape> &s,
const Reference<Material> &m, AreaLight *a);

Most of the methods of the Primitive interface related to geometric processing are sim-
ply forwarded to the corresponding Shape method. For example, GeometricPrimitive::
Intersect() calls the Shape::Intersect() method of its enclosed Shape to do the actual
geometric intersection and initializes an Intersection object to describe the intersection,
if any. It also uses the returned parametric hit distance to update the Ray::maxt member.
The primary advantage of storing the distance to the closest hit in Ray::maxt is that this
makes it easy to avoid performing intersection tests with any primitives that lie farther
along the ray than any already-found intersections.

〈GeometricPrimitive Method Definitions〉 ≡
bool GeometricPrimitive::Intersect(const Ray &r,

Intersection *isect) const {
float thit, rayEpsilon;
if (!shape->Intersect(r, &thit, &rayEpsilon, &isect->dg))

return false;
isect->primitive = this;
isect->WorldToObject = *shape->WorldToObject;
isect->ObjectToWorld = *shape->ObjectToWorld;
isect->shapeId = shape->shapeId;
isect->primitiveId = primitiveId;
isect->rayEpsilon = rayEpsilon;
r.maxt = thit;
return true;

}

We won’t include the implementations of the GeometricPrimitive’s WorldBound(),
IntersectP(), CanIntersect(), or Refine() methods here; they just forward these re-
quests on to the Shape in a similar manner. Similarly, GetAreaLight() just returns the
GeometricPrimitive::areaLight member.

The GetBSDF() method uses the Primitive’s Shape to find the shading geometry at the
point and forwards the request on to the Material.
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〈GeometricPrimitive Method Definitions〉 +≡
BSDF *GeometricPrimitive::GetBSDF(const DifferentialGeometry &dg,

const Transform &ObjectToWorld,
MemoryArena &arena) const {

DifferentialGeometry dgs;
shape->GetShadingGeometry(ObjectToWorld, dg, &dgs);
return material->GetBSDF(dg, dgs, arena);

}

The GeometricPrimitive::GetBSSRDF() method is similar; it also computes the shading
geometry and returns the BSSRDF returned by the Material::GetBSSRDF() method.

4.1.2 TransformedPrimitive: OBJECT INSTANCING AND ANIMATED PRIMITIVES

TransformedPrimitive holds a single Primitive and also includes an AnimatedTransform
that is essentially injected in between the underlying primitive and its representation in
the scene. This extra transformation enables two useful features: object instancing and
primitives with animated transformations.

Object instancing is a classic technique in rendering that reuses transformed copies of a
single collection of geometry at multiple positions in a scene. For example, in a model of
a concert hall with thousands of identical seats, the scene description can be compressed
substantially if all of the seats refer to a shared geometric representation of a single
seat. The ecosystem scene in Figure 4.1 has over 4000 individual plants of various types,
although only 61 unique plant models. Because each plant model is instanced multiple
times with a different transformation for each instance, the complete scene has a total of
19.5 million triangles, although only 1.1 million triangles are stored in memory, thanks to
primitive reuse through object instancing. pbrt uses approximately 600 MB of memory
when rendering this scene with object instancing, but would need upwards of 11 GB to
render it without instancing.

Animated transformations enable rigid-body animation of primitives in the scene via the
AnimatedTransform class. See Figure 2.14 for an image that exhibits motion blur due to
animated transformations.

Recall that the Shapes of Chapter 3 themselves had object-to-world transformations
applied to them to place them in the scene. If a shape is held by a TransformedPrimitive,
then the shape’s notion of world space isn’t the actual scene world space—only after
the TransformedPrimitive’s transformation is also applied is the shape actually in world
space. For the applications here, it makes sense for the shape to not be at all aware of the
additional transformations being applied. For animated shapes, it’s simpler to isolate all
of the handling of animated transformations to a single class here, rather than require
all Shapes to support AnimatedTransforms. Similarly, for instanced primitives, letting
Shapes know all of the instance transforms is of limited utility: we wouldn’t want the
TriangleMesh to make a copy of its vertex positions for each instance transformation and
transform them all the way to world space, since this would negate the memory savings
of object instancing.

The TransformedPrimitive constructor takes a reference to the Primitive that represents
the model, and the transformation that places it in the scene. If the geometry is described
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by multiple Primitives, the calling code is responsible for placing them in an Aggregate
class so that only a single Primitive needs to be stored here.

The TransformedPrimitive also requires that the primitive be intersectable. (In the pres-
ence of object instancing, it would be a waste of both time and memory for all of the
instances to individually refine the primitive.) For the code that refines shapes and creates
aggregates as needed, see the pbrtObjectInstance() function in Section B.3.6 of Appen-
dix B for the code that creates primitive instances, and see the pbrtShape() function in
Section B.3.5 for the corresponding code for animated shapes.

〈TransformedPrimitive Declarations〉 ≡
class TransformedPrimitive : public Primitive {
public:

〈TransformedPrimitive Public Methods 190〉
private:

〈TransformedPrimitive Private Data 190〉
};

〈TransformedPrimitive Public Methods〉 ≡ 190

TransformedPrimitive(Reference<Primitive> &prim,
const AnimatedTransform &w2p)

: primitive(prim), WorldToPrimitive(w2p) { }

〈TransformedPrimitive Private Data〉 ≡ 190

Reference<Primitive> primitive;
const AnimatedTransform WorldToPrimitive;

The key task of the TransformedPrimitive is to bridge the Primitive interface that
it implements and the Primitive that it holds a reference to, accounting for the ef-
fects of the additional transformation matrix that it holds. The TransformedPrimitive’s
WorldToPrimitive transformation defines the transformation from world space to the
coordinate system of this particular instance of the geometry. The primitive member
has its own transformation that should be interpreted as the transformation from a
TransformedPrimitive’s coordinate system to object space. The complete transformation
to world space requires both of these transformations together.

Thus, the TransformedPrimitive::Intersect() method transforms the given ray to the
primitive’s coordinate system and passes the transformed ray to its Intersect() routine.
If a hit is found, the maxt value from the transformed ray needs to be copied into the
ray r originally passed to the Intersect() routine and the Intersection’s primitiveId
member is overridden with the primitive id of this TransformedPrimitive.

〈TransformedPrimitive Method Definitions〉 ≡
bool TransformedPrimitive::Intersect(const Ray &r,

Intersection *isect) const {
Transform w2p;
WorldToPrimitive.Interpolate(r.time, &w2p);
Ray ray = w2p(r);
if (!primitive->Intersect(ray, isect))

return false;
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r.maxt = ray.maxt;
isect->primitiveId = primitiveId;
if (!w2p.IsIdentity()) {

〈Compute world-to-object transformation for instance 191〉
〈Transform instance’s differential geometry to world space 191〉

}
return true;

}

The Transforms in the Intersection must be set properly as well; we need to compute
the full transformation all the way from the primitive’s object space to the actual world
space, multiplying both of the relevant Transforms together.

〈Compute world-to-object transformation for instance〉 ≡ 190

isect->WorldToObject = isect->WorldToObject * w2p;
isect->ObjectToWorld = Inverse(isect->WorldToObject);

Finally, the DifferentialGeometry at the intersection point needs to be transformed
to world space; the primitive member will already have transformed the differential
geometry information to its notion of world space, so here we only need to apply the
effect of the additional transformation held here.

〈Transform instance’s differential geometry to world space〉 ≡ 190

Transform PrimitiveToWorld = Inverse(w2p);
isect->dg.p = PrimitiveToWorld(isect->dg.p);
isect->dg.nn = Normalize(PrimitiveToWorld(isect->dg.nn));
isect->dg.dpdu = PrimitiveToWorld(isect->dg.dpdu);
isect->dg.dpdv = PrimitiveToWorld(isect->dg.dpdv);
isect->dg.dndu = PrimitiveToWorld(isect->dg.dndu);
isect->dg.dndv = PrimitiveToWorld(isect->dg.dndv);

The rest of the geometric Primitive methods are forwarded on to the shared instance,
with the results similarly transformed as needed by the TransformedPrimitive’s transfor-
mation.

〈TransformedPrimitive Public Methods〉 +≡ 190

BBox WorldBound() const {
return WorldToPrimitive.MotionBounds(primitive->WorldBound(), true);

}

The TransformedPrimitive::GetAreaLight(), TransformedPrimitive::GetBSDF(), and
TransformedPrimitive::GetBSSRDF() methods should never be called. The correspond-
ing methods in the primitive that the ray actually hit will be called instead. Calling the
TransformedPrimitive implementations (not shown here) results in a run time error.

4.2 AGGREGATES

Acceleration structures are one of the components at the heart of any ray tracer. Without
algorithms to reduce the number of unnecessary ray intersection tests, tracing a single ray
through a scene would take time linear in the number of primitives in the scene, since the
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ray would need to be tested against each primitive in turn to find the closest intersection.
However, doing so is extremely wasteful in most scenes, since the ray passes nowhere near
the vast majority of primitives. The goal of acceleration structures is to allow the quick,
simultaneous rejection of groups of primitives and also to order the search process so that
nearby intersections are likely to be found first and farther away ones can potentially be
ignored.

Because ray–object intersections can account for the bulk of execution time in ray tracers,
there has been a substantial amount of research into algorithms for ray intersection
acceleration. We will not try to explore all of this work here, but refer the interested reader
to references in the “Further Reading” section at the end of this chapter and in particular
Arvo and Kirk’s chapter in An Introduction to Ray Tracing (Glassner 1989a), which has a
useful taxonomy for classifying different approaches to ray-tracing acceleration.

Broadly speaking, there are two main approaches to this problem: spatial subdivision and
object subdivision. Spatial subdivision algorithms decompose 3D space into regions (e.g.,
by superimposing a grid of axis-aligned boxes on the scene) and record which primitives
overlap which regions. In some algorithms, the regions may also be adaptively subdivided
based on the number of primitives that overlap them. When a ray intersection needs to
be found, the sequence of these regions that the ray passes through is computed and only
the primitives in the overlapping regions are tested for intersection.

In contrast, object subdivision is based on progressively breaking the objects in the scene
down into smaller sets of constituent objects. For example, a model of a room might be
broken down into four walls, a ceiling, and a chair. If a ray doesn’t intersect the room’s
bounding volume, then all of its primitives can be culled. Otherwise, the ray is tested
against each of them. If it hits the chair’s bounding volume, for example, then it might
be tested against each of its legs, the seat, and the back. Otherwise, the chair is culled.

Both of these approaches have been quite successful at solving the general problem of
ray intersection computational requirements; there’s no fundamental reason to prefer
one over the other. The GridAccel and KdTreeAccel in this chapter are both based on the
spatial subdivision approach, and the BVHAccel is based on object subdivision.

The Aggregate class provides an interface for grouping multiple Primitive objects to-
gether. Because Aggregates themselves implement the Primitive interface, no special
support is required elsewhere in pbrt for intersection acceleration. Integrators can be
written as if there was just a single Primitive in the scene, checking for intersections
without needing to be concerned about how they’re actually found. Furthermore, by
implementing acceleration in this way, it is easy to experiment with new acceleration
techniques by simply adding a new Aggregate primitive to pbrt.

〈Aggregate Declarations〉 ≡
class Aggregate : public Primitive {
public:

〈Aggregate Public Methods〉
};

Like TransformedPrimitives, Aggregate intersection routines leave the Intersection::
primitive pointer set to the primitive that the ray actually hit, not the aggregate that
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holds the primitive. Because pbrt uses this pointer to obtain information about the prim-
itive being hit (its reflection and emission properties), the Aggregate::GetAreaLight(),
Aggregate::GetBSDF(), and Aggregate::GetBSSRDF() methods should never be called, so
the implementations of those methods (not shown here) report a run time error.

4.2.1 RAY–BOX INTERSECTIONS

All of the accelerators in this chapter store a BBox that surrounds all of their primitives.
This box can be used to quickly determine if a ray doesn’t intersect any of the primitives;
if the ray misses the box, it also must miss all of the primitives inside it. Furthermore,
some accelerators use the point at which the ray enters the bounding box and the point
at which it exits as part of the input to their traversal algorithms. Therefore, we will add
a BBox method, BBox::IntersectP(), that checks for a ray–box intersection and returns
the two parametric t values of the intersection, if any.

One way to think of bounding boxes is as the intersection of three slabs, where a slab is the
region of space between two parallel planes. To intersect a ray against a box, we intersect
the ray against each of the box’s three slabs in turn. Because the slabs are aligned with the
three coordinate axes, a number of optimizations can be made in the ray–slab tests.

The basic ray-bounding box intersection algorithm works as follows: We start with a
parametric interval that covers that range of positions t along the ray where we’re in-
terested in finding intersections; typically, this is [0, ∞). We will then successively com-
pute the two parametric t positions where the ray intersects each axis-aligned slab. We
compute the set intersection of the per-slab intersection interval with the current BBox
intersection interval, returning failure if we find that the resulting interval is degenerate.
If, after checking all three slabs, the interval is nondegenerate, we have the parametric
range of the ray that is inside the box. Figure 4.2 illustrates this process, and Figure 4.3
shows the basic geometry of a ray and a slab.

If the BBox::IntersectP() method returns true, the intersection’s parametric range
is returned in the optional arguments hitt0 and hitt1. Intersections outside of the

y1
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Figure 4.2: Intersecting a Ray with an Axis-Aligned Bounding Box. We compute intersection
points with each slab in turn, progressively narrowing the parametric interval. Here, in 2D, the
intersection of the x and y extents along the ray gives the extent where the ray is inside the box.
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tfar
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Figure 4.3: Intersecting a Ray with an Axis-Aligned Slab. The two planes shown here are
described by x = c for some constant value c. The normal of each plane is (1, 0, 0). Unless the ray is
parallel to the planes, it will intersect the slab twice, at parametric positions tnear and tfar.

[Ray::mint, Ray::maxt] range of the ray are ignored. If the ray’s starting point,
ray(ray.mint), is inside the box, ray.mint is returned for hitt0.

〈BBox Method Definitions〉 +≡
bool BBox::IntersectP(const Ray &ray, float *hitt0,

float *hitt1) const {
float t0 = ray.mint, t1 = ray.maxt;
for (int i = 0; i < 3; ++i) {

〈Update interval for ith bounding box slab 195〉
}
if (hitt0) *hitt0 = t0;
if (hitt1) *hitt1 = t1;
return true;

}

For each pair of planes, this routine needs to compute two ray–plane intersections, giving
the parametric t values where the intersections occur. Consider the slab along the x

axis: it can be described by the two planes through the points (x1, 0, 0) and (x2, 0, 0),
each with normal (1, 0, 0). Consider the first t value for a plane intersection, t1. The
general form of the intersection between a ray with origin o and direction d and a plane
ax + by + cz + d = 0 can be shown to be

t = −d − (o · (a , b, c))

(d · (a , b, c))
.

Because the y and z components of the plane’s normal are zero, b and c are zero, and a

is one. The plane’s d coefficient is −x1. We can use this information and the definition of
the dot product to simplify this substantially:

t1 = x1 − ox

dx

.
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The code to compute these values starts by computing the reciprocal of the correspond-
ing component of the ray direction so that it can multiply by this factor instead of per-
forming multiple divisions. Note that, although it divides by this component, it is not
necessary to verify that it is nonzero. If it is zero, then invRayDir will hold an infinite
value, either −∞ or ∞, and the rest of the algorithm still works correctly.1

〈Update interval for ith bounding box slab〉 ≡ 194

float invRayDir = 1.f / ray.d[i];
float tNear = (pMin[i] - ray.o[i]) * invRayDir;
float tFar = (pMax[i] - ray.o[i]) * invRayDir;
〈Update parametric interval from slab intersection ts 195〉

The two distances are reordered so that tNear holds the closer intersection and tFar the
farther one. This gives a parametric range [tNear, tFar], which is used to compute the
set intersection with the current range [t0, t1] to compute a new range. If this new range
is empty (i.e., t0 > t1), then the code can immediately return failure. There is another
floating-point-related subtlety here: in the case where the ray origin is in the plane of
one of the bounding box slabs and the ray lies in the plane of the slab, it is possible
that tNear or tFar will be computed by an expression of the form 0/0, which results
in an IEEE floating-point “not a number” (NaN) value. Like infinity values, NaNs have
well-specified semantics: for example, any logical comparison involving a NaN always
evaluates to false. Therefore, the code that updates the values of t0 and t1 is carefully
written so that if tNear or tFar is NaN, then t0 or t1 won’t ever take on a NaN value but
will always remain unchanged.

〈Update parametric interval from slab intersection ts〉 ≡ 195

if (tNear > tFar) swap(tNear, tFar);
t0 = tNear > t0 ? tNear : t0;
t1 = tFar < t1 ? tFar : t1;
if (t0 > t1) return false;

4.3 GRID ACCELERATOR

GridAccel is an accelerator that divides an axis-aligned region of space into equal-sized
box-shaped chunks (called voxels). Each voxel stores references to the primitives that
overlap it (Figure 4.4). Given a ray, the grid steps through each of the voxels that the
ray passes through in order, checking for intersections with only the primitives in each
voxel. Useless ray intersection tests are reduced substantially because primitives far away
from the ray aren’t considered at all. Furthermore, because the voxels are considered
from near to far along the ray, it is possible to stop performing intersection tests once
an intersection has been found and it is certain that it is not possible for there to be any
closer intersections.

1 This assumes that the architecture being used supports IEEE floating-point arithmetic (Institute of Electrical and Electronic
Engineers 1985), which is universal on modern systems. The relevant properties of IEEE floating-point arithmetic are that for
all v > 0, v/0 = ∞ and for all w < 0, w/0 = −∞, where ∞ is a special value such that any positive number multiplied by ∞ gives
∞, any negative number multiplied by ∞ gives −∞, and so on.
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Figure 4.4: The regular grid accelerator divides space into regularly sized cells. Each one stores a
reference to the Primitives that overlap it.

The GridAccel structure can be initialized quickly, and a simple computation determines
the sequence of voxels through which a given ray passes. However, this simplicity is a
doubled-edged sword. GridAccel can suffer from poor performance when the primitives
in the scene aren’t distributed evenly throughout space. If there’s a small region of space
with a lot of geometry in it, all that geometry might fall in a single voxel, and perfor-
mance will suffer when a ray passes through that voxel, as many intersection tests will be
performed. This is sometimes referred to as the “teapot in a stadium” problem; it is not
unusual to have such a variable distribution of geometry in realistic scenes.

The root problem is that the data structure cannot adapt well to the distribution of the
data that it is storing: if a very fine grid is used, too much time is spent stepping through
empty space, and if the grid is too coarse, there is little benefit from the grid at all.
The BVHAccel and the KdTreeAccel in the next two sections adapt to the distribution of
geometry such that they don’t suffer from this problem.

The implementation of pbrt’s grid accelerator is defined in accelerators/grid.h and
accelerators/grid.cpp.

〈GridAccel Declarations〉 ≡
class GridAccel : public Aggregate {
public:

〈GridAccel Public Methods 208〉
private:

〈GridAccel Private Methods 200〉
〈GridAccel Private Data 198〉

};
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4.3.1 CREATION

The GridAccel constructor takes a vector of Primitives to be stored in the grid. It auto-
matically determines the number of voxels to store in the grid based on the number of
primitives.

One factor that adds to the complexity of the grid’s implementation is the fact that
some of these primitives may not be directly intersectable (they may return false from
Primitive::CanIntersect()) and need to refine themselves into subprimitives before
intersection tests can be performed. This is a problem because when the grid is being
built we might have a scene with a single primitive in it and choose to build a coarse grid
with few voxels. However, if the primitive is later refined for intersection tests, it might
turn into millions of primitives, and the original grid resolution would be far too small
to efficiently find intersections. pbrt addresses this problem in one of two ways:

. If the refineImmediately flag to the grid constructor is true, all of the Primitives are
refined until they have turned into intersectable primitives. This may waste time and
memory for scenes where some of the primitives wouldn’t ever need to be refined
since no rays approached them.

. Otherwise, primitives are refined only when a ray enters one of the voxels they
are stored in. If they create multiple Primitives when refined, the new primitives
are stored in a new instance of a GridAccel that replaces the original Primitive in
the top-level grid. This allows the implementation to handle primitive refinement
without needing to rebuild the entire grid each time another primitive is refined.

Lazy refinement of primitives in the grid introduces some issues related to multi-
threaded synchronization (recall the discussion of this topic in Section 1.3.5); the issue is
that if one thread is traversing the grid while another thread is modifying its contents by
refining primitives in the grid, we need to ensure that one thread’s modification of the
shared data doesn’t cause the other thread to access a partially updated or an otherwise
inconsistent representation of the scene. We will discuss these issues (and a solution to
them) further later in this section.

〈GridAccel Method Definitions〉 ≡
GridAccel::GridAccel(const vector<Reference<Primitive> > &p,

bool refineImmediately) {
〈Initialize primitives with primitives for grid 198〉
〈Compute bounds and choose grid resolution 198〉
〈Compute voxel widths and allocate voxels 199〉
〈Add primitives to grid voxels 199〉
〈Create reader-writer mutex for grid 205〉

}

First, the constructor determines the set of Primitives to store in the grid, either directly
using the primitives passed in or refining all of them until they are intersectable.
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〈Initialize primitives with primitives for grid〉 ≡ 197

if (refineImmediately)
for (uint32_t i = 0; i < p.size(); ++i)

p[i]->FullyRefine(primitives);
else

primitives = p;

〈GridAccel Private Data〉 ≡ 196

vector<Reference<Primitive> > primitives;

The constructor next computes the overall bounds of the primitives and determines how
many voxels to create along each of the x, y, and z axes. The voxelsPerUnitDist value,
computed in a later fragment, gives the average number of voxels that should be created
per unit distance in each of the three directions. Given that value, multiplication by the
grid’s extent in each direction gives the number of voxels to make. The number of voxels
in any direction is capped at 64 to avoid creating enormous data structures for complex
scenes.

〈Compute bounds and choose grid resolution〉 ≡ 197

for (uint32_t i = 0; i < primitives.size(); ++i)
bounds = Union(bounds, primitives[i]->WorldBound());

Vector delta = bounds.pMax - bounds.pMin;
〈Find voxelsPerUnitDist for grid 199〉
for (int axis = 0; axis < 3; ++axis) {

nVoxels[axis] = Round2Int(delta[axis] * voxelsPerUnitDist);
nVoxels[axis] = Clamp(nVoxels[axis], 1, 64);

}

〈GridAccel Private Data〉 +≡ 196

int nVoxels[3];
BBox bounds;

As a first approximation to choosing a grid size, the total number of voxels should be
roughly proportional to the total number of primitives. If the primitives were uniformly
distributed, this would mean that a constant number of primitives were in each voxel.
While increasing the number of voxels improves efficiency by reducing the average num-
ber of primitives per voxel (and thus reducing the number of ray–object intersection tests
that need to be performed), doing so also increases memory use, hurts cache perfor-
mance, and increases the time spent tracing the ray’s path through the greater number of
voxels it overlaps. On the other hand, too few voxels obviously leads to poor performance,
due to an increased number of ray–primitive intersection tests to be performed.

Given the goal of having the number of voxels be proportional to the number of primi-
tives, the cube root of the number of objects is an appropriate starting point for the grid
resolution in each direction. In practice, this value is typically scaled by an empirically
chosen factor; in pbrt we use a scale of three. Whichever of the x, y, or z dimensions
has the largest extent will have exactly 3 3√

N voxels for a scene with N primitives. The
number of voxels in the other two directions are set in an effort to create voxels that are
as close to cubes as possible. The voxelsPerUnitDist variable is the foundation of these
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computations; it gives the number of voxels to create per unit distance. Its value is set
such that cubeRoot voxels will be created along the axis with the largest extent.

〈Find voxelsPerUnitDist for grid〉 ≡ 198

int maxAxis = bounds.MaximumExtent();
float invMaxWidth = 1.f / delta[maxAxis];
float cubeRoot = 3.f * powf(float(primitives.size()), 1.f/3.f);
float voxelsPerUnitDist = cubeRoot * invMaxWidth;

Given the number of voxels in each dimension, the constructor sets GridAccel::width,
which holds the world space widths of the voxels in each direction. It also precomputes
the GridAccel::invWidth values, so that routines that would otherwise divide by the
width value can perform a multiplication rather than dividing. Finally, it allocates an
array of pointers to Voxel structures for each of the voxels in the grid. These pointers are
set to NULL initially and will be allocated only for any voxel with one or more overlapping
primitives.2

〈Compute voxel widths and allocate voxels〉 ≡ 197

for (int axis = 0; axis < 3; ++axis) {
width[axis] = delta[axis] / nVoxels[axis];
invWidth[axis] = (width[axis] == 0.f) ? 0.f : 1.f / width[axis];

}
int nv = nVoxels[0] * nVoxels[1] * nVoxels[2];
voxels = AllocAligned<Voxel *>(nv);
memset(voxels, 0, nv * sizeof(Voxel *));

〈GridAccel Private Data〉 +≡ 196

Vector width, invWidth;
Voxel **voxels;

Once the voxels themselves have been allocated, primitives can be added to the voxels that
they overlap. The GridAccel constructor adds each primitive’s corresponding Primitive
pointer to the voxels that its bounding box overlaps.

〈Add primitives to grid voxels〉 ≡ 197

for (uint32_t i = 0; i < primitives.size(); ++i) {
〈Find voxel extent of primitive 200〉
〈Add primitive to overlapping voxels 200〉

}

First, the world space bounds of the primitive are converted to the integer voxel co-
ordinates that contain its two opposite corners. This is done by the utility function
GridAccel::posToVoxel(), which turns a world space (x , y , z) position into the coor-
dinates of the voxel that contains that point.

2 Some grid implementations try to save even more memory by using a hash table from (x , y , z) voxel number to voxel
structures. This saves the memory for the voxels array, which may be substantial if the grid has very small voxels, and the
vast majority of them are empty. However, this approach increases the computational expense of finding the Voxel structure
for each voxel that a ray passes through.
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〈Find voxel extent of primitive〉 ≡ 199

BBox pb = primitives[i]->WorldBound();
int vmin[3], vmax[3];
for (int axis = 0; axis < 3; ++axis) {

vmin[axis] = posToVoxel(pb.pMin, axis);
vmax[axis] = posToVoxel(pb.pMax, axis);

}

〈GridAccel Private Methods〉 ≡ 196

int posToVoxel(const Point &P, int axis) const {
int v = Float2Int((P[axis] - bounds.pMin[axis]) *

invWidth[axis]);
return Clamp(v, 0, nVoxels[axis]-1);

}

The GridAccel::voxelToPos() method is the opposite of GridAccel::posToVoxel(); it
returns the position of a particular voxel’s lower corner.

〈GridAccel Private Methods〉 +≡ 196

float voxelToPos(int p, int axis) const {
return bounds.pMin[axis] + p * width[axis];

}

The primitive is now added to all of the voxels that its bounds overlap. Using its bounds
for this test is a conservative test for voxel overlap—at worst it will overestimate the voxels
that the primitive overlaps. Figure 4.5 shows an example of two cases where this method
leads to primitives being stored in more voxels than necessary. Exercise 4.5 at the end of
this chapter describes a more accurate method for associating primitives with voxels.

〈Add primitive to overlapping voxels〉 ≡ 199

for (int z = vmin[2]; z <= vmax[2]; ++z)
for (int y = vmin[1]; y <= vmax[1]; ++y)

for (int x = vmin[0]; x <= vmax[0]; ++x) {
int o = offset(x, y, z);
if (!voxels[o]) {

〈Allocate new voxel and store primitive in it 201〉
}
else {

〈Add primitive to already-allocated voxel 201〉
}

}

The GridAccel::offset() utility functions give the offset into the voxels array for a
particular (x , y , z) voxel. It is the standard indexing scheme in C++ for encoding a
multidimensional array in a 1D array. We have localized this computation into a separate
function, however, in order to make it easier to experiment with different array layouts,
such as blocked schemes for improved cache performance.
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Figure 4.5: Two examples of cases where using the bounding box of a primitive to determine which
grid voxels it should be stored in will cause it to be stored in a number of voxels unnecessarily. On
the left, a long skinny triangle has a lot of empty space inside its axis-aligned bounding box, and it is
unnecessarily added to the shaded voxels. On the right, the surface of the sphere doesn’t intersect
many of the voxels inside its bound, and they are also inaccurately included in the sphere’s extent.
While this error degrades performance, it doesn’t lead to incorrect ray intersection results.

〈GridAccel Private Methods〉 +≡ 196

inline int offset(int x, int y, int z) const {
return z*nVoxels[0]*nVoxels[1] + y*nVoxels[0] + x;

}

To further reduce memory used for dynamically allocated voxels and to improve their
memory locality, the grid constructor uses a MemoryArena to hand out memory for vox-
els. The MemoryArena, implemented in Section A.5.4 in Appendix A, provides custom
allocation routines based on allocating large blocks of memory and using them to ser-
vice memory allocation requests. It doesn’t support freeing memory from individual
allocations; it will only free all of them at once. This improves allocation performance
and essentially eliminates memory overhead for bookkeeping, thus reducing the system’s
overall memory use as well.

〈Allocate new voxel and store primitive in it〉 ≡ 200

voxels[o] = voxelArena.Alloc<Voxel>();
*voxels[o] = Voxel(primitives[i]);

〈GridAccel Private Data〉 +≡ 196

MemoryArena voxelArena;

If this isn’t the first primitive to overlap this voxel, the Voxel has already been allocated
and the primitive is handed off to the Voxel::AddPrimitive() method.

〈Add primitive to already-allocated voxel〉 ≡ 200

voxels[o]->AddPrimitive(primitives[i]);
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The Voxel structure records which primitives overlap its extent using a vector. The
Voxel::allCanIntersect member is used to record if all of the primitives in the voxel
are intersectable or if some need refinement. It is initially conservatively set to false.

〈Voxel Declarations〉 ≡
struct Voxel {

〈Voxel Public Methods 202〉
private:

vector<Reference<Primitive> > primitives;
bool allCanIntersect;

};

When a Voxel is first created, a single Primitive is provided to the constructor.

〈Voxel Public Methods〉 ≡ 202

Voxel(Reference<Primitive> op) {
allCanIntersect = false;
primitives.push_back(op);

}

〈Voxel Public Methods〉 +≡ 202

void AddPrimitive(Reference<Primitive> prim) {
primitives.push_back(prim);

}

We won’t show the straightforward implementations of the GridAccel::WorldBound() or
GridAccel::CanIntersect() methods or its destructor.

4.3.2 TRAVERSAL

The GridAccel::Intersect() method handles the task of determining which voxels a ray
passes through and calling the appropriate ray–primitive intersection routines.

〈GridAccel Method Definitions〉 +≡
bool GridAccel::Intersect(const Ray &ray, Intersection *isect) const {

〈Check ray against overall grid bounds 203〉
〈Set up 3D DDA for ray 204〉
〈Walk ray through voxel grid 205〉

}

The first task is to determine where the ray enters the grid, which gives the starting
point for traversal through the voxels. If the ray’s origin is inside the grid’s bounding
box, then clearly it begins there. Otherwise, the GridAccel::Intersect() method finds
the intersection of the ray with the grid’s bounding box. If the ray hits the bounding
box, the first intersection along the ray is the starting point. If the ray misses the grid’s
bounding box, there can be no intersection with any of the geometry in the grid so
GridAccel::Intersect() returns immediately.
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rayT

NextCrossingT[1]

NextCrossingT[0]

DeltaT[0]

Figure 4.6: Stepping a Ray through a Voxel Grid. rayT is the parametric distance along the ray
to the first intersection with the grid. The parametric distance along the ray to the point where it
crosses into the next voxel in the x direction is stored in NextCrossingT[0], and similarly for the y and
z directions (not shown). When the ray crosses into the next x voxel, for example, it is immediately
possible to update the value of NextCrossingT[0] by adding a fixed value, the voxel width in x divided
by the ray’s x direction, DeltaT[0].

〈Check ray against overall grid bounds〉 ≡ 202

float rayT;
if (bounds.Inside(ray(ray.mint)))

rayT = ray.mint;
else if (!bounds.IntersectP(ray, &rayT))

return false;
Point gridIntersect = ray(rayT);

The intersection method next computes the initial (x , y , z) integer voxel coordinates for
the ray as well as a number of auxiliary values that will make it efficient to incrementally
compute the set of voxels that the ray passes through. The ray–voxel traversal computa-
tion is similar in spirit to Bresenham’s classic line drawing algorithm, where the series of
pixels that a line passes through are found incrementally using just addition and compar-
isons to step from one pixel to the next. The main difference between the ray marching
algorithm and Bresenham’s is that we would like to find all of the voxels that the ray passes
through, while Bresenham’s algorithm typically only turns on one pixel per row or col-
umn that a line passes through. This type of algorithm is known as a digital differential
analyzer (DDA).

The values that the ray–voxel stepping algorithm needs to keep track of are the following:

1. The coordinates of the voxel currently being considered, Pos.
2. The parametric t position along the ray where it makes its next crossing into

another voxel in each of the x, y, and z directions, NextCrossingT (Figure 4.6).
For example, for a ray with a positive x direction component, the parametric
value along the ray where it crosses into the next voxel in x, NextCrossingT[0] is
the parametric starting point rayT plus the x distance to the next voxel divided
by the ray’s x direction component. (This is similar to the ray–plane intersection
formula.)

3. The change in the current voxel coordinates after a step in each direction (1 or −1),
stored in Step.
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4. The distance along the ray between voxels in each direction, DeltaT. These values
are found by dividing the width of a voxel in a particular direction by the ray’s
corresponding direction component, giving the parametric distance along the ray
to travel to get from one side of a voxel to the other in the particular direction.

5. The coordinates of the voxel after the last one the ray passes through when it exits
the grid, Out.

The first two items will be updated as we step through the grid, while the last three are
constant for each ray.

〈Set up 3D DDA for ray〉 ≡ 202

float NextCrossingT[3], DeltaT[3];
int Step[3], Out[3], Pos[3];
for (int axis = 0; axis < 3; ++axis) {

〈Compute current voxel for axis 204〉
if (ray.d[axis] >= 0) {

〈Handle ray with positive direction for voxel stepping 204〉
}
else {

〈Handle ray with negative direction for voxel stepping 205〉
}

}

Computing the voxel address that the ray starts out in is easy since this method has
already determined the position where the ray enters the grid. Thus, it can simply use
the utility routine GridAccel::posToVoxel() defined earlier.

〈Compute current voxel for axis〉 ≡ 204

Pos[axis] = posToVoxel(gridIntersect, axis);

If the ray’s direction component is zero for a particular axis, then the NextCrossingT
value for that axis will be initialized to the IEEE floating-point ∞ value by the following
computation. The voxel stepping logic later in this section will always decide to step
in one of the other directions and will correctly never step in this direction. This is
convenient because it can handle rays that are perpendicular to any axis without any
special code to test for division by zero.

〈Handle ray with positive direction for voxel stepping〉 ≡ 204

NextCrossingT[axis] = rayT +
(voxelToPos(Pos[axis]+1, axis) - gridIntersect[axis]) / ray.d[axis];

DeltaT[axis] = width[axis] / ray.d[axis];
Step[axis] = 1;
Out[axis] = nVoxels[axis];

Similar computations compute these values for rays with negative direction components:
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〈Handle ray with negative direction for voxel stepping〉 ≡ 204

NextCrossingT[axis] = rayT +
(voxelToPos(Pos[axis], axis) - gridIntersect[axis]) / ray.d[axis];

DeltaT[axis] = -width[axis] / ray.d[axis];
Step[axis] = -1;
Out[axis] = -1;

Once all the preprocessing is done for the ray, stepping through the grid can start.
Starting with the first voxel that the ray passes through, the intersection routine checks
for intersections with the primitives inside that voxel.

As the ray traverses the grid, it is necessary to handle some issues related to multi-
threaded execution. In the GridAccel constructor, a reader-writer mutex, rwMutex, is
created. A reader-writer mutex allows an arbitrary number of threads to request read-
only access to shared data. However, if one of the threads wants to modify the data, it
must upgrade its hold on the mutex to have write privileges; the RWMutex will only allow a
single thread to have write privileges and only when no other threads hold read privileges.

〈Create reader-writer mutex for grid〉 ≡ 197

rwMutex = RWMutex::Create();

〈GridAccel Private Data〉 +≡ 196

mutable RWMutex *rwMutex;

Before traversal starts, a reader lock is acquired from the mutex. If another thread holds a
writer lock on the mutex, this thread will stall until the other has released the writer lock,
indicating that it has finished updating the grid and it’s safe for this thread to continue
traversal.

If a hit is found during traversal, the Boolean flag hitSomething will be set to true. It is
necessary to be careful, however, because the found intersection point may be outside
the current voxel since primitives may overlap multiple voxels. Therefore, the method
doesn’t immediately return when done processing a voxel where an intersection was
found. Instead, it takes advantage of the fact that the primitive’s intersection routine
will update the Ray::maxt member variable—thus, when stepping through voxels, it will
return only when it enters a voxel at a point that is beyond the closest found intersection.

〈Walk ray through voxel grid〉 ≡ 202

RWMutexLock lock(*rwMutex, READ);
bool hitSomething = false;
for (;;) {

〈Check for intersection in current voxel and advance to next 205〉
}
return hitSomething;

〈Check for intersection in current voxel and advance to next〉 ≡ 205

Voxel *voxel = voxels[offset(Pos[0], Pos[1], Pos[2])];
if (voxel != NULL)

hitSomething |= voxel->Intersect(ray, isect, lock);
〈Advance to next voxel 207〉
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For each nonempty voxel, the grid traversal method calls the Voxel’s Intersect() routine,
which handles the details of calling the Primitive::Intersect() methods.

〈GridAccel Method Definitions〉 +≡
bool Voxel::Intersect(const Ray &ray, Intersection *isect,

RWMutexLock &lock) {
〈Refine primitives in voxel if needed 206〉
〈Loop over primitives in voxel and find intersections 207〉

}

The Boolean Voxel::allCanIntersect member indicates whether all of the primitives in
the voxel are known to be intersectable. If its value is false, the Intersect() routine
must loop over all of the primitives, calling their refinement routines as needed until
only intersectable geometry remains. If refinement is necessary, we must deal with multi-
threaded synchronization: we are going to modify shared data in the grid accelerator,
so the read-only lock on the RWMutex is upgraded to a writer lock. If other threads are
currently holding reader locks, this thread stalls until they have released their reader
locks.

Once this thread has a writer lock, it is sure that no other threads are accessing the
grid data structures. It is then free to loop over the primitives in the voxel and re-
fine them, modifying the data stored in the voxel. When it is done, it can update
Voxel::allCanIntersect to be true. It then releases its writer lock and continues traver-
sal, holding only a reader lock and thus allowing other threads to access the grid’s data.

〈Refine primitives in voxel if needed〉 ≡ 206

if (!allCanIntersect) {
lock.UpgradeToWrite();
for (uint32_t i = 0; i < primitives.size(); ++i) {

Reference<Primitive> &prim = primitives[i];
〈Refine primitive prim if it’s not intersectable 207〉

}
allCanIntersect = true;
lock.DowngradeToRead();

}

Primitives that need refinement are refined until only intersectable primitives remain,
and a new GridAccel is created to hold the returned primitives if more than one was
returned. One reason to always make a GridAccel for multiple refined primitives is that
doing so simplifies primitive refinement. A single Primitive always turns into a single
object that represents all of the new Primitives, so it’s never necessary to increase the
number of primitives in the voxel. If this primitive overlaps multiple voxels, then because
all of them hold a reference to a single Primitive for it, it suffices to just update the
primitive reference directly, and there’s no need to loop over all of the voxels.3

3 The bounding box of the original unrefined primitive must encompass the refined geometry as well, so there’s no danger that
the refined geometry will overlap more voxels than before. On the other hand, it also may overlap many fewer voxels, which
would lead to unnecessary intersection tests, since the grid implementation doesn’t try to remove references to the primitive
from voxels that it no longer overlaps.
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〈Refine primitive prim if it’s not intersectable〉 ≡ 206

if (!prim->CanIntersect()) {
vector<Reference<Primitive> > p;
prim->FullyRefine(p);
if (p.size() == 1)

primitives[i] = p[0];
else

primitives[i] = new GridAccel(p, false);
}

Once it is certain that there are only intersectable primitives in the voxel, the loop over
Primitives for performing intersection tests is straightforward.

〈Loop over primitives in voxel and find intersections〉 ≡ 206

bool hitSomething = false;
for (uint32_t i = 0; i < primitives.size(); ++i) {

Reference<Primitive> &prim = primitives[i];
if (prim->Intersect(ray, isect))

hitSomething = true;
}
return hitSomething;

After doing the intersection tests for the primitives in the current voxel, it is necessary to
step to the next voxel in the ray’s path. The grid must decide whether to step in the x,
y, or z direction. Fortunately, the NextCrossingT variable gives the parametric distance
to the next crossing for each direction, and it can choose the smallest one. Traversal can
be terminated if this step goes outside of the voxel grid, or if the selected NextCrossingT
value is beyond the t distance of an already-found intersection. Otherwise, the grid steps
to the chosen voxel and increments the chosen direction’s NextCrossingT by its DeltaT
value, so that future traversal steps will know how far it is necessary to go before stepping
in this direction again.

〈Advance to next voxel〉 ≡ 205

〈Find stepAxis for stepping to next voxel 208〉
if (ray.maxt < NextCrossingT[stepAxis])

break;
Pos[stepAxis] += Step[stepAxis];
if (Pos[stepAxis] == Out[stepAxis])

break;
NextCrossingT[stepAxis] += DeltaT[stepAxis];

Choosing the axis along which to step basically requires finding the smallest of three
numbers, a straightforward task. However, in this case an optimization is possible be-
cause we don’t care about the value of the smallest number, just its corresponding index
in the NextCrossingT array. It is possible to compute this index without any branching,
which can lead to performance improvements on modern CPUs, which generally pay a
performance penalty for branches.

The following tricky bit of code determines which of the three NextCrossingT values is
the smallest and sets stepAxis accordingly. It encodes this logic by setting each of the
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three low-order bits in an integer to the results of three comparisons between pairs of
NextCrossingT values. It then uses a table (cmpToAxis) to map the resulting integer to the
direction with the smallest value.

〈Find stepAxis for stepping to next voxel〉 ≡ 207

int bits = ((NextCrossingT[0] < NextCrossingT[1]) << 2) +
((NextCrossingT[0] < NextCrossingT[2]) << 1) +
((NextCrossingT[1] < NextCrossingT[2]));

const int cmpToAxis[8] = { 2, 1, 2, 1, 2, 2, 0, 0 };
int stepAxis = cmpToAxis[bits];

The grid also provides a special GridAccel::IntersectP() method that is optimized for
checking for intersection along shadow rays, where we are only interested in the presence
of an intersection and not the details of the intersection itself. It is almost identical to
the GridAccel::Intersect() routine, except that it calls the Primitive::IntersectP()
method of the primitives rather than Primitive::Intersect(), and it immediately stops
traversal when any intersection is found. Because of the small number of differences, we
won’t include the implementation here.

〈GridAccel Public Methods〉 ≡ 196

bool IntersectP(const Ray &ray) const;

4.4 BOUNDING VOLUME HIERARCHIES

Bounding volume hierarchies (BVHs) are an approach for ray intersection acceleration
based on primitive subdivision, where the primitives are partitioned into a hierarchy of
disjoint sets. (In contrast, spatial subdivision generally partitions space into a hierarchy
of disjoint sets.) Figure 4.7 shows a bounding volume hierarchy for a simple scene.
Primitives are stored in the leaves and each node stores a bounding box of the primitives
in the nodes beneath it. Thus, as a ray traverses through the tree, any time it doesn’t
intersect a node’s bounds, the subtree beneath that node can be skipped.

One property of primitive subdivision is that each primitive appears in the hierarchy only
once. In contrast, a primitive may overlap many grid voxels, and thus may be tested for
intersection multiple times as the ray passes through them.4 Another implication of this
property is that the amount of memory needed to represent the hierarchy is bounded.
For a binary BVH that stores a single primitive in each leaf, the total number of nodes is
2n − 1, where n is the number of primitives. There will be n leaf nodes and n − 1 interior
nodes. If leaves store multiple primitives, fewer nodes are needed.

BVHs are generally almost as efficient to build as grids are, while delivering much better
performance thanks to being able to better adapt to irregular distributions of primitives
in the scene. The kd-trees in the following section generally deliver slightly faster ray
intersection calculations than BVHs but take substantially longer to build. On the other

4 The mailboxing technique can be used to avoid multiple intersections for accelerators that use spatial subdivision, though its
implementation can be tricky in the presence of multi-threading. More information on mailboxing is available in the “Further
Reading” section.
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(a) (b)

Figure 4.7: Bounding Volume Hierarchy for a Simple Scene. (a) A small collection of primitives,
with bounding boxes shown by dashed lines. The primitives are aggregated based on proximity; here,
the sphere and the equilateral triangle are bounded by another bounding box before being bounded by
a bounding box that encompasses the entire scene (both shown in solid lines). (b) The corresponding
bounding volume hierarchy. The root node holds the bounds of the entire scene. Here, it has two
children, one storing a bounding box that encompasses the sphere and equilateral triangle (that in
turn has those primitives as its children) and the other storing the bounding box that holds the skinny
triangle.

hand, BVHs are generally more numerically robust and less prone to subtle round-off
bugs than kd-trees are.

The BVH accelerator, BVHAccel, is defined in accelerators/bvh.h and accelerators/
bvh.cpp. In addition to the primitives to be stored and the maximum number of prim-
itives that can be in any leaf node, its constructor takes a string that describes which
of three algorithms to use when partitioning primitives to build the tree. The default,
“sah,” indicates that an algorithm based on the “surface area heuristic” (discussed in Sec-
tion 4.4.2) should be used. The other two approaches take slightly less computation when
building the tree but create trees that are typically less efficient when used for ray inter-
sections.

〈BVHAccel Method Definitions〉 ≡
BVHAccel::BVHAccel(const vector<Reference<Primitive> > &p,

uint32_t mp, const string &sm) {
maxPrimsInNode = min(255u, mp);
for (uint32_t i = 0; i < p.size(); ++i)

p[i]->FullyRefine(primitives);
if (sm == "sah") splitMethod = SPLIT_SAH;
else if (sm == "middle") splitMethod = SPLIT_MIDDLE;
else if (sm == "equal") splitMethod = SPLIT_EQUAL_COUNTS;
else {

Warning("BVH split method \"%s\" unknown. Using \"sah\".",
sm.c_str());

splitMethod = SPLIT_SAH;
}
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if (primitives.size() == 0) {
nodes = NULL;
return;

}
〈Build BVH from primitives 210〉

}

〈BVHAccel Private Data〉 ≡
uint32_t maxPrimsInNode;
enum SplitMethod { SPLIT_MIDDLE, SPLIT_EQUAL_COUNTS, SPLIT_SAH };
SplitMethod splitMethod;
vector<Reference<Primitive> > primitives;

4.4.1 BVH CONSTRUCTION

There are three stages to BVH construction. First, bounding information about each
primitive is computed and stored in an array that will be used during tree construction.
Next, the tree is built via a procedure that splits the primitives into subsets and recursively
builds BVHs for the subsets. The result is a binary tree where each interior node holds
pointers to its children and each leaf node holds references to one or more primitives.
Finally, this tree is converted to a more compact (and thus more efficient) pointerless
representation for use during rendering. (The implementation is more straightforward
with this approach, versus computing the pointerless representation directly during con-
struction, which is also possible.)

〈Build BVH from primitives〉 ≡ 209

〈Initialize buildData array for primitives 210〉
〈Recursively build BVH tree for primitives 211〉
〈Compute representation of depth-first traversal of BVH tree 223〉

For each primitive to be stored in the BVH, we store the centroid of its bounding box,
its complete bounding box, and its index in the primitives array in an instance of the
BVHPrimitiveInfo structure. As the tree is built, the buildData array will be recursively
sorted and partitioned to place the primitives into groups that are spatially close to each
other.

〈Initialize buildData array for primitives〉 ≡ 210

vector<BVHPrimitiveInfo> buildData;
buildData.reserve(primitives.size());
for (uint32_t i = 0; i < primitives.size(); ++i) {

BBox bbox = primitives[i]->WorldBound();
buildData.push_back(BVHPrimitiveInfo(i, bbox));

}
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〈BVHAccel Local Declarations〉 ≡
struct BVHPrimitiveInfo {

BVHPrimitiveInfo(int pn, const BBox &b)
: primitiveNumber(pn), bounds(b) {
centroid = .5f * b.pMin + .5f * b.pMax;

}
int primitiveNumber;
Point centroid;
BBox bounds;

};

The initial call to recursiveBuild() is given all of the primitives to be stored in the tree.
It returns a pointer to the root of the tree, which is represented with the BVHBuildNode
structure. The code here uses a MemoryArena to allocate nodes one at a time.

One important side-effect of the tree construction process is that a new array of primi-
tives is returned via the orderedPrims parameter; this array stores the primitives ordered
so that the primitives in leaf nodes occupy contiguous ranges in the array. It is swapped
with the original primitives array after tree construction.

〈Recursively build BVH tree for primitives〉 ≡ 210

MemoryArena buildArena;
uint32_t totalNodes = 0;
vector<Reference<Primitive> > orderedPrims;
orderedPrims.reserve(primitives.size());
BVHBuildNode *root = recursiveBuild(buildArena, buildData, 0,

primitives.size(), &totalNodes,
orderedPrims);

primitives.swap(orderedPrims);

Each BVHBuildNode represents a node of the BVH. All nodes store a BBox, which stores
the bounds of all of the children beneath the node. Each interior node stores pointers to
its two children in children. Interior nodes also record the coordinate axis along which
primitives were sorted for distribution to their two children; this information is used to
improve the performance of the traversal algorithm. Leaf nodes need to record which
primitive or primitives are stored in them; the elements of the BVHAccel::primitives
array from the offset firstPrimOffset up to but not including firstPrimOffset +
nPrimitives are the primitives in the leaf. (Hence the need for reordering the primi-
tives array, so that this representation can be used, rather than, for example, storing a
variable-sized array of primitive indices at each leaf node.)

〈BVHAccel Local Declarations〉 +≡
struct BVHBuildNode {

〈BVHBuildNode Public Methods 212〉
BBox bounds;
BVHBuildNode *children[2];
uint32_t splitAxis, firstPrimOffset, nPrimitives;

};
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The BVHBuildNode constructor only initializes the children pointers; we’ll distinguish
between leaf and interior nodes by whether their children pointers are NULL or not,
respectively.

〈BVHBuildNode Public Methods〉 ≡ 211

BVHBuildNode() { children[0] = children[1] = NULL; }

〈BVHBuildNode Public Methods〉 +≡ 211

void InitLeaf(uint32_t first, uint32_t n, const BBox &b) {
firstPrimOffset = first;
nPrimitives = n;
bounds = b;

}

The InitInterior() method requires that the two children nodes already have been cre-
ated, so that their pointers can be passed in. This requirement makes it easy to compute
the bounds of the interior node, since the children bounds are immediately available.

〈BVHBuildNode Public Methods〉 +≡ 211

void InitInterior(uint32_t axis, BVHBuildNode *c0, BVHBuildNode *c1) {
children[0] = c0;
children[1] = c1;
bounds = Union(c0->bounds, c1->bounds);
splitAxis = axis;
nPrimitives = 0;

}

In addition to the MemoryArena used for node allocation and the array of BVHPrimitive
Info structures, recursiveBuild() takes as parameters the range [start, end). It is re-
sponsible for returning a BVH for the subset of primitives represented by the range from
buildData[start] up to and including buildData[end-1]. If this represents only a sin-
gle primitive, the recursion has bottomed out and a leaf node is created. Otherwise, this
method partitions the elements of the array in that range using one of a few partitioning
algorithms and reorders the array elements in the range accordingly, so that the ranges
from [start, mid) and [mid, end) represent the partitioned subsets. If the partitioning is
successful, these two primitive sets are in turn passed to recursive calls that will them-
selves return pointers to nodes for the two children of the current node.

totalNodes tracks the total number of BVH nodes that have been created; this number
is used so that exactly the right number of the more compact LinearBVHNodes can be
allocated later. Finally, the orderedPrims array is used to store primitive references as
primitives are stored in leaf nodes of the tree. This array is initially empty; when a leaf
node is created, it adds the primitives that overlap it to the end of the array, making
it possible for leaf nodes to just store an offset into this array and a primitive count
to represent the set of primitives that overlap it. Recall that when tree construction is
finished, BVHAccel::primitives is replaced with the ordered primitives array created
here.
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〈BVHAccel Method Definitions〉 +≡
BVHBuildNode *BVHAccel::recursiveBuild(MemoryArena &buildArena,

vector<BVHPrimitiveInfo> &buildData, uint32_t start,
uint32_t end, uint32_t *totalNodes,
vector<Reference<Primitive> > &orderedPrims) {

(*totalNodes)++;
BVHBuildNode *node = buildArena.Alloc<BVHBuildNode>();
〈Compute bounds of all primitives in BVH node 213〉
uint32_t nPrimitives = end - start;
if (nPrimitives == 1) {

〈Create leaf BVHBuildNode 213〉
}
else {

〈Compute bound of primitive centroids, choose split dimension dim 214〉
〈Partition primitives into two sets and build children 215〉

}
return node;

}

〈Compute bounds of all primitives in BVH node〉 ≡ 213

BBox bbox;
for (uint32_t i = start; i < end; ++i)

bbox = Union(bbox, buildData[i].bounds);

At leaf nodes, the primitives overlapping the leaf are appended to the orderedPrims array
and a leaf node object is initialized.

〈Create leaf BVHBuildNode〉 ≡ 213, 215, 221

uint32_t firstPrimOffset = orderedPrims.size();
for (uint32_t i = start; i < end; ++i) {

uint32_t primNum = buildData[i].primitiveNumber;
orderedPrims.push_back(primitives[primNum]);

}
node->InitLeaf(firstPrimOffset, nPrimitives, bbox);

For interior nodes, the collection of primitives must be partitioned between the two
children subtrees. Given n primitives, there are in general 2n − 2 possible ways to par-
tition them into two nonempty groups. In practice when building BVHs, one generally
considers partitions along a coordinate axis, meaning that there are about 6n candidate
partitions. (Along each axis, each primitive may be put into the first partition or the sec-
ond partition.)

Here, we choose one of the three coordinate axes to use in partitioning the primitives. We
select the axis with the greatest variation of bounding box centroids for the current set of
primitives. (An alternative would be to try all three axes and select the one that gave the
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x

y

Figure 4.8: Choosing the Axis Along Which to Partition Primitives. The BVHAccel chooses an
axis along which to partition the primitives based on which axis has the largest range of the centroids
of the primitives’ bounding boxes. Here, in two dimensions, their extent is largest along the y axis
(filled points on the axes), so the primitives will be partitioned in y.

best result, but in practice this approach works well.) This approach gives good partitions
in many reasonable scenes; Figure 4.8 illustrates the strategy.

The general goal in partitioning here is to select a partition of primitives that doesn’t have
too much overlap of the bounding boxes of the two resulting primitive sets—if there is
substantial overlap then it will more frequently be necessary to traverse both children
subtrees when traversing the tree, requiring more computation than if it had been possi-
ble to more effectively prune away collections of primitives. This idea of finding effective
primitive partitions will be made more rigorous shortly, in the discussion of the surface
area heuristic.

〈Compute bound of primitive centroids, choose split dimension dim〉 ≡ 213

BBox centroidBounds;
for (uint32_t i = start; i < end; ++i)

centroidBounds = Union(centroidBounds, buildData[i].centroid);
int dim = centroidBounds.MaximumExtent();

If all of the centroid points are at the same position (i.e., the centroid bounds have
zero volume), then recursion stops and a leaf node is created with the primitives; none
of the splitting methods here is effective in that (unusual) case. In the usual case, the
primitives are partitioned using the chosen method and passed to two recursive calls to
recursiveBuild().
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〈Partition primitives into two sets and build children〉 ≡ 213

uint32_t mid = (start + end) / 2;
if (centroidBounds.pMax[dim] == centroidBounds.pMin[dim]) {

〈Create leaf BVHBuildNode 213〉
return node;

}
〈Partition primitives based on splitMethod〉
node->InitInterior(dim,

recursiveBuild(buildArena, buildData, start, mid,
totalNodes, orderedPrims),

recursiveBuild(buildArena, buildData, mid, end,
totalNodes, orderedPrims));

We won’t include the code fragment 〈Partition primitives based on splitMethod〉 here; it
just uses the value of BVHAccel::splitMethod to determine which primitive partitioning
scheme to use. These three schemes will be described in the following few pages.

A simple splitMethod is SPLIT_MIDDLE, which first computes the midpoint of the prim-
itives’ centroids along the splitting axis. This method is implemented in the fragment
〈Partition primitives through node’s midpoint〉. The primitives are classified into the two
sets, depending on whether their centroids are above or below the midpoint. This parti-
tioning is easily done with the std::partition() C++ standard library function, which
takes a range of elements in an array and a comparison function and orders the elements
in the array so that all of the elements that return true for the given predicate function
appear in the range before those that return false for it.5 It returns a pointer to the first
element that had a false value for the predicate, which is converted into an offset into
the buildData array so that we can pass it to the recursive call. Figure 4.9 illustrates this
method, including cases where it does and does not work well.

〈Partition primitives through node’s midpoint〉 ≡
float pmid = .5f * (centroidBounds.pMin[dim] + centroidBounds.pMax[dim]);
BVHPrimitiveInfo *midPtr = std::partition(&buildData[start],

&buildData[end-1]+1,
CompareToMid(dim, pmid));

mid = midPtr - &buildData[0];

The CompareToMid predicate returns true if the given primitive’s bound’s centroid is below
the given midpoint.

5 Note the unusual expression of the indexing of the buildData array, &buildData[end-1]+1. The code is written in this way for
somewhat obscure reasons. In the C programming language, it is legal to compute the pointer one element past the end of
an array so that iteration over array elements can continue until the current pointer is equal to the end point. To that end, we
would like to just write the expression &buildData[end] here. However, buildData was allocated as a C++ vector; some vector
implementations issue a run-time error of the offset passed to their [] operator is past the end of the array. Because we’re
not trying to reference the value of the element one past the end of the array but just compute its address, this operation is in
fact safe. Therefore, we compute the same address in the end with the expression used here, while also satisfying any vector
error checking.
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(a)

(b)

(c)

Figure 4.9: Splitting Primitives Based on the Midpoint of Centroids on an Axis. (a) For some
distributions of primitives, such as the one shown here, splitting based on the midpoint of the
centroids along the chosen axis works well. (The bounding boxes of the two resulting primitive
groups are shown with dashed lines.) (b) For distributions like this one, the midpoint is a suboptimal
choice; the two resulting bounding boxes overlap substantially. (c) If the same group of primitives
from (b) is instead split along the line shown here, the resulting bounding boxes are smaller and don’t
overlap at all, leading to better performance when rendering.

〈BVHAccel Local Declarations〉 +≡
struct CompareToMid {

CompareToMid(int d, float m) { dim = d; mid = m; }
int dim;
float mid;
bool operator()(const BVHPrimitiveInfo &a) const {

return a.centroid[dim] < mid;
}

};
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Another straightforward partitioning scheme is used when splitMethod is SPLIT_EQUAL_
COUNTS; it is implemented in 〈Partition primitives into equally-sized subsets〉. It partitions
the primitives into two equal-sized subsets such that the first half of the n of them are the
n/2 with smallest centroid coordinate values along the chosen axis and the second half are
the ones with the largest centroid coordinate values. While this approach can sometimes
work well, the case in Figure 4.9(b) is one where this method also fares poorly.

This scheme is also easily implemented with a standard library call, std::nth_element().
It takes a start, middle, and ending pointer as well as a comparison function. It orders
the array so that the element at the middle pointer is the one that would be there if the
array was fully sorted, and such that all of the elements before the middle one compare
to less than the middle element and all of the elements after it compare to greater than it.
This ordering can be done in O(n) time, with n the number of elements, which is more
efficient than the O(n log n) of completely sorting the array.

〈Partition primitives into equally-sized subsets〉 ≡ 219

mid = (start + end) / 2;
std::nth_element(&buildData[start], &buildData[mid],

&buildData[end-1]+1, ComparePoints(dim));

〈BVHAccel Local Declarations〉 +≡
struct ComparePoints {

ComparePoints(int d) { dim = d; }
int dim;
bool operator()(const BVHPrimitiveInfo &a,

const BVHPrimitiveInfo &b) const {
return a.centroid[dim] < b.centroid[dim];

}
};

4.4.2 THE SURFACE AREA HEURISTIC

The two primitive partitioning approaches above can work well for some distributions
of primitives, but they often choose partitions that perform poorly in practice, lead-
ing to more nodes of the tree being visited by rays and hence unnecessarily inefficient
ray–primitive intersection computations at rendering time. Most of the best current al-
gorithms for building acceleration structures for ray-tracing are based on the “surface
area heuristic” (SAH), which provides a well-grounded cost model for answering ques-
tions like “which of a number of partitions of primitives will lead to a better BVH for
ray–primitive intersection tests?,” or “which of a number of possible positions to split
space in a spatial subdivision scheme will lead to a better acceleration structure?”

The SAH model estimates the computational expense of performing ray intersection
tests, including the time spent traversing nodes of the tree and the time spent on ray–
primitive intersection tests for a particular partitioning of primitives. Algorithms for
building acceleration structures can then follow the goal of minimizing total cost. Typ-
ically, a greedy algorithm is used that minimizes the cost for each single node of the
hierarchy being built individually.
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The ideas behind the SAH cost model are straightforward: at any point in building an
adaptive acceleration structure (primitive subdivision or spatial subdivision), we could
just create a leaf node for the current region and geometry. In that case, any ray that
passes through this region will be tested against all of the overlapping primitives and will
incur a cost of

N∑

i=1

tisect(i),

where N is the number of primitives and tisect(i) is the time to compute a ray–object
intersection with the ith primitive.

The other option is to split the region. In that case, rays will incur the cost

c(A, B) = ttrav + pA

NA∑

i=1

tisect(ai) + pB

NB∑

i=1

tisect(bi), (4.1)

where ttrav is the time it takes to traverse the interior node and determine which of
the children the ray passes through, pA and pB are the probabilities that the ray passes
through each of the child nodes (assuming binary subdivision), ai and bi are the indices
of primitives in the two children nodes, and NA and NB are the number of primitives that
overlap the regions of the two child nodes, respectively. The choice of how primitives are
partitioned affects both the values of the two probabilities as well as the set of primitives
on each side of the split.

In pbrt, we will make the simplifying assumption that tisect(i) is the same for all of the
primitives; this assumption is probably not too far from reality, and any error that it
introduces doesn’t seem to affect the performance of accelerators very much. Another
possibility would be to add a method to Primitive that returns an estimate of the number
of CPU cycles its intersection test requires.

The probabilities pA and pB can be computed using ideas from geometric probability. It
can be shown that for a convex volume A contained in another convex volume B, the
conditional probability that a random ray passing through B will also pass through A is
the ratio of their surface areas, sA and sB :

p(A|B) = sA

sB
.

Because we are interested in the cost for rays passing through the node, we can use this
result directly. Thus, if we are considering refining a region of space space A such that
there are two new subregions with bounds B and C (Figure 4.10), the probability that a
ray passing through A will also pass through either of the subregions is easily computed.

When splitMethod has the value SPLIT_SAH, the SAH is used for building the BVH,
choosing a partition of the primitives along the chosen axis that gives a minimal SAH
cost estimate by considering a number of candidate partitions. This is the default, and it
creates the most efficient trees for rendering. However, once we have refined down to a
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Figure 4.10: If a node of the bounding hierarchy with surface area sA is split into two children with
surface areas sB and sC, the probabilities that a ray passing through A also passes through B and C

are given by sB/sA and sC/sA, respectively. Note that sB + sC > sA, unless one of them is empty.

small handful of primitives, we switch over to partitioning into equally sized subsets. The
incremental computational cost for applying the SAH at this point isn’t worthwhile.

〈Partition primitives using approximate SAH〉 ≡
if (nPrimitives <= 4) {

〈Partition primitives into equally-sized subsets 217〉
}
else {

〈Allocate BucketInfo for SAH partition buckets 219〉
〈Initialize BucketInfo for SAH partition buckets 220〉
〈Compute costs for splitting after each bucket 221〉
〈Find bucket to split at that minimizes SAH metric 221〉
〈Either create leaf or split primitives at selected SAH bucket 221〉

}

Rather than exhaustively considering all 2n possible partitions along the axis, computing
the SAH for each to select the best, the implementation here instead divides the range
along the axis into a small number of buckets of equal extent. It then only considers
partitions at bucket boundaries. This approach is more efficient than considering all
partitions while usually still producing partitions that are nearly as effective. This idea
is illustrated in Figure 4.11.

〈Allocate BucketInfo for SAH partition buckets〉 ≡ 219

const int nBuckets = 12;
struct BucketInfo {

BucketInfo() { count = 0; }
int count;
BBox bounds;

};
BucketInfo buckets[nBuckets];

For each primitive in the range, we determine the bucket that its centroid lies in and
update the bucket’s bounds to include the primitive’s bounds.
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Figure 4.11: Choosing a Splitting Plane with the Surface Area Heuristic for BVHs. The projected
extent of primitive bounds centroids is projected onto the chosen split axis. Each primitive is placed
in a bucket along the axis based on the centroid of its bounds. The implementation then estimates
the cost for splitting the primitives along the planes along each of the bucket boundaries (solid lines);
whichever one gives the minimum cost per the surface area heuristic is selected.

〈Initialize BucketInfo for SAH partition buckets〉 ≡ 219

for (uint32_t i = start; i < end; ++i) {
int b = nBuckets *

((buildData[i].centroid[dim] - centroidBounds.pMin[dim]) /
(centroidBounds.pMax[dim] - centroidBounds.pMin[dim]));

if (b == nBuckets) b = nBuckets-1;
buckets[b].count++;
buckets[b].bounds = Union(buckets[b].bounds, buildData[i].bounds);

}

For each bucket, we now have a count of the number of primitives and the bounds of all of
their respective bounding boxes. We want to use the SAH to estimate the cost of splitting
at each of the bucket boundaries. The fragment below loops over all of the buckets and
initializes the cost[i] array to store the estimated SAH cost for splitting after the ith
bucket. (It doesn’t consider a split after the last bucket, which by definition wouldn’t split
the primitives.)

We arbitrarily set the estimated intersection cost to one, and then set the estimated
traversal cost to 1/8. (One of the two of them can always be set to one since it is the
relative, rather than absolute, magnitudes of the estimated traversal and intersection
costs that determines their effect.) While the absolute amount of computation for node
traversal—a ray–bounding box intersection—is only slightly less than the amount of
computation needed to intersect a ray with a shape, ray–primitive intersection tests
in pbrt go through two virtual function calls, which add significant overhead, so we
estimate their cost here as eight times more than the ray–box intersection.

This computation has O(n2) complexity in the number of buckets, though a linear-time
implementation based on a forward scan over the buckets and a backward scan over the
buckets that incrementally compute and store bounds and counts is possible. For the
small n here, the performance impact is generally acceptable, though for a more highly
optimized renderer addressing this inefficiency may be worthwhile.
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〈Compute costs for splitting after each bucket〉 ≡ 219

float cost[nBuckets-1];
for (int i = 0; i < nBuckets-1; ++i) {

BBox b0, b1;
int count0 = 0, count1 = 0;
for (int j = 0; j <= i; ++j) {

b0 = Union(b0, buckets[j].bounds);
count0 += buckets[j].count;

}
for (int j = i+1; j < nBuckets; ++j) {

b1 = Union(b1, buckets[j].bounds);
count1 += buckets[j].count;

}
cost[i] = .125f + (count0*b0.SurfaceArea() + count1*b1.SurfaceArea()) /

bbox.SurfaceArea();
}

Given all of the costs, a linear scan through the cost array finds the partition with
minimum cost.

〈Find bucket to split at that minimizes SAH metric〉 ≡ 219

float minCost = cost[0];
uint32_t minCostSplit = 0;
for (int i = 1; i < nBuckets-1; ++i) {

if (cost[i] < minCost) {
minCost = cost[i];
minCostSplit = i;

}
}

If the found bucket boundary for partitioning has a lower estimated cost than building
a node with the existing primitives or if more than the maximum number of primitives
allowed in a node is present, the std::partition() function is used to do the work of
reordering nodes in the buildData array. Recall from its usage above that this function
ensures that all elements of the array that return true from the given predicate appear
before those that return false, and that it returns a pointer to the first element where
the predicate returns false. Because we arbitrarily set the estimated intersection cost to
one previously, the estimated cost for just creating a leaf node is equal to the number of
primitives, nPrimitives.

〈Either create leaf or split primitives at selected SAH bucket〉 ≡ 219

if (nPrimitives > maxPrimsInNode ||
minCost < nPrimitives) {
BVHPrimitiveInfo *pmid = std::partition(&buildData[start],

&buildData[end-1]+1,
CompareToBucket(minCostSplit, nBuckets, dim, centroidBounds));

mid = pmid - &buildData[0];
}
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else {
〈Create leaf BVHBuildNode 213〉

}

〈BVHAccel Local Declarations〉 +≡
struct CompareToBucket {

CompareToBucket(int split, int num, int d, const BBox &b)
: centroidBounds(b)

{ splitBucket = split; nBuckets = num; dim = d; }
bool operator()(const BVHPrimitiveInfo &p) const;

int splitBucket, nBuckets, dim;
const BBox &centroidBounds;

};

Classifying a primitive involves recomputing which bucket it maps to and classifying the
bucket with respect to the bucket split boundary.

〈BVHAccel Local Declarations〉 +≡
bool CompareToBucket::operator()(const BVHPrimitiveInfo &p) const {

int b = nBuckets * ((p.centroid[dim] - centroidBounds.pMin[dim]) /
(centroidBounds.pMax[dim] - centroidBounds.pMin[dim]));

if (b == nBuckets) b = nBuckets-1;
return b <= splitBucket;

}

4.4.3 COMPACT BVH FOR TRAVERSAL

Once the BVH tree is built, the last step is to convert it into a compact representation—
doing so improves cache, memory, and thus overall system performance. The final BVH
is stored in a linear array in memory. The nodes of the original tree are laid out in depth-
first order, which means that the first child of each interior node is immediately after
the node in memory. The offset to the second child of each interior node is then stored
explicitly. See Figure 4.12 for an illustration of the relationship between tree topology and
node order in memory.

The LinearBVHNode structure stores the information needed to traverse the BVH. In
addition to the bounding box for each node, for leaf nodes it stores the offset and
primitive count for the primitives in the node. For interior nodes, it stores the offset to
the second child as well as which of the coordinate axes the primitives were partitioned
along when the hierarchy was built; this information is used in the traversal routine below
to try to visit nodes in front-to-back order along the ray.

〈BVHAccel Local Declarations〉 +≡
struct LinearBVHNode {

BBox bounds;
union {

uint32_t primitivesOffset; // leaf
uint32_t secondChildOffset; // interior

};
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Figure 4.12: Linear Layout of a BVH in Memory. The nodes of the BVH (left) are stored in memory
in depth-first order (right). Therefore, for any interior node of the tree (A and B in this example), the
first child is found immediately after the parent node in memory. The second child is found via an
offset pointer, represented here with lines with arrows. Leaf nodes of the tree (D, E, and C) have no
children.

uint8_t nPrimitives; // 0 -> interior node
uint8_t axis; // interior node: xyz
uint8_t pad[2]; // ensure 32 byte total size

};

This structure is padded to ensure that it’s 32 bytes large. Doing so ensures that, if
the nodes are allocated such that the first node is cache-line aligned, then none of the
subsequent nodes will straddle cache lines (as long as the cache line size is at least 32
bytes, which is the case on modern CPU architectures).

〈BVHAccel Private Data〉 +≡
LinearBVHNode *nodes;

The built tree is transformed to the LinearBVHNode representation by the flattenBVH
Tree() method, which performs a depth-first traversal and stores the nodes in memory
in linear order.

〈Compute representation of depth-first traversal of BVH tree〉 ≡ 210

nodes = AllocAligned<LinearBVHNode>(totalNodes);
for (uint32_t i = 0; i < totalNodes; ++i)

new (&nodes[i]) LinearBVHNode;
uint32_t offset = 0;
flattenBVHTree(root, &offset);

Flattening the tree to the linear representation is straightforward; the *offset parameter
tracks the current offset into the BVHAccel::nodes array. Note that the current node is
added to the array before the recursive calls to process its children (if the node is an
interior node).
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〈BVHAccel Method Definitions〉 +≡
uint32_t BVHAccel::flattenBVHTree(BVHBuildNode *node, uint32_t *offset) {

LinearBVHNode *linearNode = &nodes[*offset];
linearNode->bounds = node->bounds;
uint32_t myOffset = (*offset)++;
if (node->nPrimitives > 0) {

linearNode->primitivesOffset = node->firstPrimOffset;
linearNode->nPrimitives = node->nPrimitives;

}
else {

〈Creater interior flattened BVH node 224〉
}
return myOffset;

}

At interior nodes, recursive calls are made to flatten the two subtrees. The first one
ends up immediately after the current node in the array, as desired, and the offset of
the second one, returned by its recursive flattenBVHTree() call, is stored in this node’s
secondChildOffset member.

〈Creater interior flattened BVH node〉 ≡ 224

linearNode->axis = node->splitAxis;
linearNode->nPrimitives = 0;
flattenBVHTree(node->children[0], offset);
linearNode->secondChildOffset = flattenBVHTree(node->children[1],

offset);

4.4.4 TRAVERSAL

The BVH traversal code is quite simple—there are no recursive function calls and only a
tiny amount of data to maintain about the current state of the traversal. The Intersect()
method starts by precomputing a few values related to the ray that will be used repeatedly.

〈BVHAccel Method Definitions〉 +≡
bool BVHAccel::Intersect(const Ray &ray, Intersection *isect) const {

if (!nodes) return false;
bool hit = false;
Point origin = ray(ray.mint);
Vector invDir(1.f / ray.d.x, 1.f / ray.d.y, 1.f / ray.d.z);
uint32_t dirIsNeg[3] = { invDir.x < 0, invDir.y < 0, invDir.z < 0 };
〈Follow ray through BVH nodes to find primitive intersections 225〉
return hit;

}

Each time the while loop in Intersect() starts an iteration, nodeNum holds the offset into
the nodes array of the node to be visited. It starts with a value of zero, representing the
root of the tree. The nodes that still need to be visited are stored in the todo[] array,
which acts as a stack; todoOffset holds the offset to the next free element in the stack.
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〈Follow ray through BVH nodes to find primitive intersections〉 ≡ 224

uint32_t todoOffset = 0, nodeNum = 0;
uint32_t todo[64];
while (true) {

const LinearBVHNode *node = &nodes[nodeNum];
〈Check ray against BVH node 225〉

}

At each node, we check to see if the ray intersects the node’s bounding box (or starts
inside of it). We visit the node if so, testing for intersection with its primitives if it’s a leaf
node or processing its children if it’s an interior node. If no intersection is found, then
the offset of the next node to be visited is retrieved from todo[] (or, traversal is complete
if the stack is empty).

〈Check ray against BVH node〉 ≡ 225

if (::IntersectP(node->bounds, ray, invDir, dirIsNeg)) {
if (node->nPrimitives > 0) {

〈Intersect ray with primitives in leaf BVH node 226〉
}
else {

〈Put far BVH node on todo stack, advance to near node 227〉
}

}
else {

if (todoOffset == 0) break;
nodeNum = todo[--todoOffset];

}

BVHAccel uses a specialized IntersectP() function for checking for intersection of rays
with bounding boxes. It takes a direction vector that stores the reciprocal of the actual
direction, thus changing three divides to multiplies in the slab intersection tests, as well
as precomputed values that indicate whether each direction component is negative. The
implementation is based on the approach presented by Williams et al. (2005), which
performs three main optimizations to the basic BBox::IntersectP() routine:

. The for loop is unrolled, with the three tests handled directly.

. The reciprocals of the direction components are precomputed and passed in, mak-
ing it possible to reuse the results of the divisions across all of the bounding box
intersection tests done for the ray.

. The sign of the ray’s direction components is precomputed, making it possible to
eliminate the comparisons of the computed tNear and tFar values in the original
routine and just directly compute the respective near value and the far values. Be-
cause the comparisons that order these values from low to high in the original code
are dependent on computed values, they can be inefficient for processors to exe-
cute, since the computation of their values must be completely finished before the
comparison can be made.

Note also that this routine returns true if the ray segment is entirely inside the bounding
box, even if the intersections are not within the ray’s [mint, maxt] range; this property is
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also desirable for BVH traversal. Because so many ray–bounding box intersection tests
are performed while traversing the BVH tree, we found that this optimized method
provided approximately a 15% performance improvement in overall rendering time
compared to using BBox::IntersectP().

〈BVHAccel Local Declarations〉 +≡
static inline bool IntersectP(const BBox &bounds, const Ray &ray,

const Vector &invDir, const uint32_t dirIsNeg[3]) {
〈Check for ray intersection against x and y slabs 226〉
〈Check for ray intersection against z slab〉
return (tmin < ray.maxt) && (tmax > ray.mint);

}

If the ray direction vector is negative, the “near” parametric intersection will be found
with the slab with the larger of the two bounding values, and the far intersection will
be found with the slab with the smaller of them. The implementation here uses this
observation to compute the near and far parametric values in each direction directly.

〈Check for ray intersection against x and y slabs〉 ≡ 226

float tmin = (bounds[ dirIsNeg[0]].x - ray.o.x) * invDir.x;
float tmax = (bounds[1-dirIsNeg[0]].x - ray.o.x) * invDir.x;
float tymin = (bounds[ dirIsNeg[1]].y - ray.o.y) * invDir.y;
float tymax = (bounds[1-dirIsNeg[1]].y - ray.o.y) * invDir.y;
if ((tmin > tymax) || (tymin > tmax))

return false;
if (tymin > tmin) tmin = tymin;
if (tymax < tmax) tmax = tymax;

The fragment 〈Check for ray intersection against z slab〉 is analogous and isn’t included
here.

If the current node is a leaf, then the ray must be tested for intersection with the primi-
tives inside it. The next node to visit is then found from the todo stack; even if an inter-
section is found in the current node, the remaining nodes must be visited, in case one of
them yields a closer intersection. However, if an intersection is found, the ray’s maxt value
will be updated to the intersection distance; this makes it possible to efficiently discard
remaining nodes that are farther away than the intersection.

〈Intersect ray with primitives in leaf BVH node〉 ≡ 225

for (uint32_t i = 0; i < node->nPrimitives; ++i)
if (primitives[node->primitivesOffset+i]->Intersect(ray, isect))

hit = true;
if (todoOffset == 0) break;
nodeNum = todo[--todoOffset];

For an interior node that the ray hits, it is necessary to visit both of their children. As
described above, it’s desirable to visit the first child that the ray passes through before
visiting the second one, in case there is a primitive that the ray intersects in the first one,
so that the ray’s maxt value can be updated, thus reducing the ray’s extent and thus the
number of node bounding boxes it intersects.
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An efficient way to perform a front-to-back traversal without incurring the expense of
intersecting the ray with both child nodes and comparing the distances is to use the
sign of the ray’s direction vector for the coordinate axis along which primitives were
partitioned for the current node: if the sign is negative, we should visit the second child
before the first child, since the primitives that went into the second child’s subtree were
on the upper side of the partition point. (And conversely for a positive-signed direction.)
Doing this is straightforward: The offset for the node to be visited first is copied to
nodeNum and the offset for the other node is added to the todo stack. (Recall that the
first child is immediately after the current node due to the depth-first layout of nodes
in memory.)

〈Put far BVH node on todo stack, advance to near node〉 ≡ 225

if (dirIsNeg[node->axis]) {
todo[todoOffset++] = nodeNum + 1;
nodeNum = node->secondChildOffset;

}
else {

todo[todoOffset++] = node->secondChildOffset;
nodeNum = nodeNum + 1;

}

The BVHAccel::IntersectP() method is essentially the same as the regular intersection
method, with the usual two differences that Primitives’ IntersectP() methods are called
rather than Intersect(), and traversal stops immediately if any intersection is found.

4.5 KD-TREE ACCELERATOR

Binary space partitioning (BSP) trees adaptively subdivide space into irregularly sized
regions. The most important consequence of this difference with regular grids is that they
can be a much more effective data structure for storing irregularly distributed collections
of geometry. A BSP tree starts with a bounding box that encompasses the entire scene.
If the number of primitives in the box is greater than some threshold, the box is split
in half by a plane. Primitives are then associated with whichever half they overlap and
primitives that lie in both halves are associated with both of them. (This is in contrast to
BVHs, where each primitive is assigned to only one of the two subgroups after a split.)

The splitting process continues recursively either until each leaf region in the resulting
tree contains a sufficiently small number of primitives or until a maximum depth is
reached. Because the splitting planes can be placed at arbitrary positions inside the overall
bound and because different parts of 3D space can be refined to different degrees, BSP
trees can easily handle uneven distributions of geometry.

Two variations of BSP trees are kd-trees and octrees. A kd-tree simply restricts the splitting
plane to be perpendicular to one of the coordinate axes; this makes both traversal and
construction of the tree more efficient, at the cost of some flexibility in how space is
subdivided. The octree uses three axis-perpendicular planes to simultaneously split the
box into eight regions at each step (typically by splitting down the center of the extent
in each direction). In this section, we will implement a kd-tree for ray intersection
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acceleration in the KdTreeAccel class. Source code for this class can be found in the files
accelerators/kdtreeaccel.h and accelerators/kdtreeaccel.cpp.

〈KdTreeAccel Declarations〉 ≡
class KdTreeAccel : public Aggregate {
public:

〈KdTreeAccel Public Methods 245〉
private:

〈KdTreeAccel Private Methods〉
〈KdTreeAccel Private Data 229〉

};

In addition to the primitives to be stored, the KdTreeAccel constructor takes a few param-
eters that are used to guide the decisions that will be made as the tree is built; these pa-
rameters are stored in member variables (isectCost, traversalCost, maxPrims, maxDepth,
and emptyBonus) for later use. For simplicity of implementation, the KdTreeAccel requires
that all of the primitives it stores be intersectable. We leave as an exercise the task of im-
proving the implementation to do lazy refinement like the GridAccel does. Therefore, the
constructor starts out by refining the given primitives until all are intersectable before
building the tree. See Figure 4.13 for an overview of how the tree is built.

y

x

Figure 4.13: The kd-tree is built by recursively splitting the bounding box of the scene geometry
along one of the coordinate axes. Here, the first split is along the x axis; it is placed so that the
triangle is precisely alone in the right region and the rest of the primitives end up on the left. The left
region is then refined a few more times with axis-aligned splitting planes. The details of the refinement
criteria—which axis is used to split space at each step, at which position along the axis the plane is
placed, and at what point refinement terminates—can all substantially affect the performance of the
tree in practice.
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〈KdTreeAccel Method Definitions〉 ≡
KdTreeAccel::KdTreeAccel(const vector<Reference<Primitive> > &p,

int icost, int tcost, float ebonus, int maxp,
int md)

: isectCost(icost), traversalCost(tcost), maxPrims(maxp), maxDepth(md),
emptyBonus(ebonus) {

for (uint32_t i = 0; i < p.size(); ++i)
p[i]->FullyRefine(primitives);

〈Build kd-tree for accelerator 232〉
}

〈KdTreeAccel Private Data〉 ≡ 228

int isectCost, traversalCost, maxPrims, maxDepth;
float emptyBonus;
vector<Reference<Primitive> > primitives;

4.5.1 TREE REPRESENTATION

The kd-tree is a binary tree, where each interior node always has both children and where
leaves of the tree store the primitives that overlap them. Each interior node must provide
access to three pieces of information:

. Split axis: which of the x, y, or z axes was split at this node.

. Split position: the position of the splitting plane along the axis.

. Children: information about how to reach the two child nodes beneath it.

Each leaf node needs to record only which primitives overlap it.

It is worth going through a bit of trouble to ensure that all interior nodes and many leaf
nodes use just 8 bytes of memory (assuming 4-byte floats and pointers) because doing
so ensures that four nodes will fit into a 32-byte cache line. Because there are often many
nodes in the tree and because many nodes are generally accessed for each ray, minimizing
the size of the node representation substantially improves cache performance. Our initial
implementation used a 16-byte node representation; when we reduced the size to 8 bytes
we obtained nearly a 20% speed increase. Both leaves and interior nodes are represented
by the following KdAccelNode structure. The comments after each union member indicate
whether a particular field is used for interior nodes, leaf nodes, or both.6

〈KdTreeAccel Local Declarations〉 ≡
struct KdAccelNode {

〈KdAccelNode Methods 231〉
union {

float split; // Interior
uint32_t onePrimitive; // Leaf
uint32_t *primitives; // Leaf

};

6 The attentive reader will note that on a system with 64-bit pointers the KdAccelNode structure will actually be 12 bytes, not 8.
We leave the correction of this shortcoming to an exercise at the end of the chapter.
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private:
union {

uint32_t flags; // Both
uint32_t nPrims; // Leaf
uint32_t aboveChild; // Interior

};
};

The two low-order bits of the KdAccelNode::flags variable are used to differentiate be-
tween interior nodes with x, y, and z splits (where these bits hold the values 0, 1, and 2,
respectively) and leaf nodes (where these bits hold the value 3). It is relatively easy to store
leaf nodes in 8 bytes: since the low 2 bits of KdAccelNode::flags are used to indicate that
this is a leaf, the upper 30 bits of KdAccelNode::nPrims are available to record how many
primitives overlap it. Then, if just a single primitive overlaps a KdAccelNode leaf, an un-
signed integer index into the KdTreeAccel::primitives array identifies the Primitive. If
more than one primitive overlaps, memory is dynamically allocated for an array of their
indices pointed to by KdAccelNode::primitives.

Leaf nodes are easy to initialize, though we have to be careful with the details since
both flags and nPrims share the same storage; we need to be careful to not clobber
data for one of them while initializing the other. Furthermore, the number of primitives
must be shifted two bits to the left before being stored so that the low two bits of
KdAccelNode::flags can both be set to 1 to indicate that this is a leaf node.

〈KdTreeAccel Method Definitions〉 +≡
void KdAccelNode::initLeaf(uint32_t *primNums, int np,

MemoryArena &arena) {
flags = 3;
nPrims |= (np << 2);
〈Store primitive ids for leaf node 230〉

}

For leaf nodes with zero or one overlapping primitives, no dynamic memory allocation
is necessary thanks to the KdAccelNode::onePrimitive field. For the case where multiple
primitives overlap, the caller passes in a MemoryArena for allocating memory for the arrays
of Primitive ids.

〈Store primitive ids for leaf node〉 ≡ 230

if (np == 0)
onePrimitive = 0;

else if (np == 1)
onePrimitive = primNums[0];

else {
primitives = arena.Alloc<uint32_t>(np);
for (int i = 0; i < np; ++i)

primitives[i] = primNums[i];
}

Getting interior nodes down to 8 bytes is also reasonably straightforward. One 32-bit
float stores the position along the chosen split axis where the node splits space, and, as
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explained earlier, the lowest 2 bits of KdAccelNode::flags are used to record which axis
the node was split along. All that is left is to store enough information to find the two
children of the node as we’re traversing the tree.

Rather than storing two pointers or offsets, we lay the nodes out in a way that lets us
only store one child pointer: all of the nodes are allocated in a single contiguous block
of memory, and the child of an interior node that is responsible for space below the
splitting plane is always stored in the array position immediately after its parent (this
also improves cache performance, by keeping at least one child close to its parent in
memory). The other child, representing space above the splitting plane, will end up at
somewhere else in the array; a single integer offset, KdAccelNode::aboveChild, stores its
position in the nodes array. This representation is similar to the one used for BVH nodes
in Section 4.4.3.

Given all those conventions, the code to initialize an interior node is straightforward.
As in the initLeaf() method, it’s important to assign the value to flags before setting
aboveChild, and to compute the logical OR of the shifted above child value so as to not
clobber the bits stored in flags.

〈KdAccelNode Methods〉 ≡ 229

void initInterior(uint32_t axis, uint32_t ac, float s) {
split = s;
flags = axis;
aboveChild |= (ac << 2);

}

Finally, we’ll provide a few methods to extract various values from the node, so that
callers don’t have to be aware of the subtle details of its representation in memory.

〈KdAccelNode Methods〉 +≡ 229

float SplitPos() const { return split; }
uint32_t nPrimitives() const { return nPrims >> 2; }
uint32_t SplitAxis() const { return flags & 3; }
bool IsLeaf() const { return (flags & 3) == 3; }
uint32_t AboveChild() const { return aboveChild >> 2; }

4.5.2 TREE CONSTRUCTION

The kd-tree is built with a recursive top-down algorithm. At each step, we have an axis-
aligned region of space and a set of primitives that overlap that region. Either the region
is split into two subregions and turned into an interior node, or a leaf node is created
with the overlapping primitives, terminating the recursion.

As mentioned in the discussion of KdAccelNodes, all tree nodes are stored in a contiguous
array. KdTreeAccel::nextFreeNode records the next node in this array that is available,
and KdTreeAccel::nAllocedNodes records the total number that have been allocated. By
setting both of them to zero and not allocating any nodes at start-up, the implementation
here ensures that an allocation will be done immediately when the first node of the tree
is initialized.
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It is also necessary to determine a maximum tree depth if one wasn’t given to the con-
structor. Although the tree construction process will normally terminate naturally at a
reasonable depth, it is important to cap the maximum depth so that the amount of mem-
ory used for the tree cannot grow without bound in pathological cases. We have found
that the value 8 + 1.3 log(N) gives a reasonable maximum depth for a variety of scenes.

〈Build kd-tree for accelerator〉 ≡ 229

nextFreeNode = nAllocedNodes = 0;
if (maxDepth <= 0)

maxDepth = Round2Int(8 + 1.3f * Log2Int(float(primitives.size())));
〈Compute bounds for kd-tree construction 232〉
〈Allocate working memory for kd-tree construction 236〉
〈Initialize primNums for kd-tree construction 232〉
〈Start recursive construction of kd-tree 233〉
〈Free working memory for kd-tree construction〉

〈KdTreeAccel Private Data〉 +≡ 228

KdAccelNode *nodes;
int nAllocedNodes, nextFreeNode;

Because the construction routine will be repeatedly using the bounding boxes of the
primitives along the way, they are stored in a vector before tree construction starts
so that the potentially slow Primitive::WorldBound() methods don’t need to be called
repeatedly.

〈Compute bounds for kd-tree construction〉 ≡ 232

vector<BBox> primBounds;
primBounds.reserve(primitives.size());
for (uint32_t i = 0; i < primitives.size(); ++i) {

BBox b = primitives[i]->WorldBound();
bounds = Union(bounds, b);
primBounds.push_back(b);

}

〈KdTreeAccel Private Data〉 +≡ 228

BBox bounds;

One of the parameters to the tree construction routine is an array of primitive indices
indicating which primitives overlap the current node. Because all primitives overlap the
root node (when the recursion begins) we start with an array initialized with values from
zero through primitives.size()-1.

〈Initialize primNums for kd-tree construction〉 ≡ 232

uint32_t *primNums = new uint32_t[primitives.size()];
for (uint32_t i = 0; i < primitives.size(); ++i)

primNums[i] = i;

KdTreeAccel::buildTree() is called for each tree node. It is responsible for deciding if the
node should be an interior node or leaf and updating the data structures appropriately.
The last three parameters, edges, prims0, and prims1, are pointers to data from the
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〈Allocate working memory for kd-tree construction〉 fragment, which will be defined and
documented in a few pages.

〈Start recursive construction of kd-tree〉 ≡ 232

buildTree(0, bounds, primBounds, primNums, primitives.size(),
maxDepth, edges, prims0, prims1);

The main parameters to KdTreeAccel::buildTree() are the offset into the array of
KdAccelNodes to use for the node that it creates, nodeNum; the bounding box that gives
the region of space that the node covers, nodeBounds; and the indices of primitives that
overlap it, primNums. The remainder of the parameters will be described later, closer to
where they are used.

〈KdTreeAccel Method Definitions〉 +≡
void KdTreeAccel::buildTree(int nodeNum, const BBox &nodeBounds,

const vector<BBox> &allPrimBounds, uint32_t *primNums,
int nPrimitives, int depth, BoundEdge *edges[3],
uint32_t *prims0, uint32_t *prims1, int badRefines) {

〈Get next free node from nodes array 233〉
〈Initialize leaf node if termination criteria met 233〉
〈Initialize interior node and continue recursion 234〉

}

If all of the allocated nodes have been used up, node memory is reallocated with twice as
many entries and the old values are copied. The first time KdTreeAccel::buildTree() is
called, KdTreeAccel::nAllocedNodes is zero and an initial block of tree nodes is allocated.

〈Get next free node from nodes array〉 ≡ 233

if (nextFreeNode == nAllocedNodes) {
int nAlloc = max(2 * nAllocedNodes, 512);
KdAccelNode *n = AllocAligned<KdAccelNode>(nAlloc);
if (nAllocedNodes > 0) {

memcpy(n, nodes, nAllocedNodes * sizeof(KdAccelNode));
FreeAligned(nodes);

}
nodes = n;
nAllocedNodes = nAlloc;

}
++nextFreeNode;

A leaf node is created (stopping the recursion) either if there are a sufficiently small
number of primitives in the region, or if the maximum depth has been reached. The
depth parameter starts out as the tree’s maximum depth and is decremented at each level.

〈Initialize leaf node if termination criteria met〉 ≡ 233

if (nPrimitives <= maxPrims || depth == 0) {
nodes[nodeNum].initLeaf(primNums, nPrimitives, arena);
return;

}
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As described earlier, KdAccelNode::initLeaf() uses a memory arena to allocate space for
variable-sized arrays of primitives. Because the arena used here is a member variable, all
of the memory it allocates will automatically be freed when the KdTreeAccel object is
destroyed.

〈KdTreeAccel Private Data〉 +≡ 228

MemoryArena arena;

If this is an internal node, it is necessary to choose a splitting plane, classify the primitives
with respect to that plane, and recurse.

〈Initialize interior node and continue recursion〉 ≡ 233

〈Choose split axis position for interior node 236〉
〈Create leaf if no good splits were found 239〉
〈Classify primitives with respect to split 239〉
〈Recursively initialize children nodes 240〉

Our implementation chooses a split using the surface area heuristic (SAH) introduced in
Section 4.4.2. The SAH is applicable to kd-trees as well as BVHs; here, the estimated cost
is computed for a series of candidate splitting planes in the node, and the split that gives
the lowest cost is chosen.

In the implementation here, the intersection cost tisect and the traversal cost ttrav can be
set by the user; their default values are 80 and 1, respectively. Ultimately, it is the ratio
of these two values that determines the behavior of the tree-building algorithm.7 The
greater ratio between these values compared to the values used for BVH construction
reflects the fact that visiting a kd-tree node is relatively much less expensive than a BVH
node.

One modification to the SAH used for BVH trees is that for kd-trees it is worth giving
a slight preference to choosing splits where one of the children has no primitives over-
lapping it, since rays passing through these regions can immediately advance to the next
kd-tree node without any ray–primitive intersection tests. Thus, the revised costs for un-
split and split regions are, respectively,

tisectN , and

ttrav + (1 − be)(pBNBtisect + pANAtisect),

where be is a “bonus” value that is zero unless one of the two regions is completely empty,
in which case it takes on a value between zero and one.

Given a way to compute the probabilities for the cost model, the only problem to address
is how to generate candidate splitting positions and how to efficiently compute the cost
for each candidate. It can be shown that the minimum cost with this model will be at-
tained at a split that is coincident with one of the faces of one of the primitive’s bounding

7 Many other implementations of this approach seem to use values for these costs that are much closer together, sometimes
even approaching equal values (for example, see Hurley et al. 2002). The values used here gave the best performance for a
number of test scenes in pbrt. We suspect that this discrepancy is due to the fact that ray–primitive intersection tests in pbrt
require two virtual function calls and a ray world-to-object-space transformation, in addition to the cost of performing the
actual intersection test. Highly optimized ray tracers that only support triangle primitives don’t pay any of that additional cost.
See Section 18.1.2 for further discussion of this design trade-off.
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Figure 4.14: Given an axis along which we’d like to consider possible splits, the primitives’ bounding
boxes are projected onto the axis, which leads to an efficient algorithm to track how many primitives
would be on each side of a particular splitting plane. Here, for example, a split at a1 would leave A

completely below the splitting plane, B straddling it, and C completely above it. Each point on the
axis, a0, a1, b0, b1, c0, and c1, is represented by an instance of the BoundEdge structure.

boxes—there’s no need to consider splits at intermediate positions. (To convince yourself
of this, consider the behavior of the cost function between the edges of the faces.) Here,
we will consider all bounding box faces inside the region for one or more of the three
coordinate axes.

The cost for checking all of these candidates thus can be kept relatively low with a care-
fully structured algorithm. To compute these costs, we will sweep across the projections
of the bounding boxes onto each axis and keep track of which gives the lowest cost (Fig-
ure 4.14). Each bounding box has two edges on each axis, each of which is represented
by an instance of the BoundEdge structure. This structure records the position of the edge
along the axis, whether it represents the start or end of a bounding box (going from low
to high along the axis), and which primitive it is associated with.

〈KdTreeAccel Local Declarations〉 +≡
struct BoundEdge {

〈BoundEdge Public Methods 235〉
float t;
int primNum;
enum { START, END } type;

};

〈BoundEdge Public Methods〉 ≡ 235

BoundEdge(float tt, int pn, bool starting) {
t = tt;
primNum = pn;
type = starting ? START : END;

}

At most, 2 * primitives.size() BoundEdges are needed for computing costs for any tree
node, so the memory for the edges for all three axes is allocated once and then reused for
each node that is created. The fragment 〈Free working memory for kd-tree construction〉,
not included here, frees this space after the tree has been built.
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〈Allocate working memory for kd-tree construction〉 ≡ 232

BoundEdge *edges[3];
for (int i = 0; i < 3; ++i)

edges[i] = new BoundEdge[2*primitives.size()];

After determining the estimated cost for creating a leaf, KdTreeAccel::buildTree()
chooses an axis to try to split along and computes the cost function for each candi-
date split. bestAxis and bestOffset record the axis and bounding box edge index that
have given the lowest cost so far, bestCost. invTotalSA is initialized to the reciprocal of
the node’s surface area; its value will be used when computing the probabilities of rays
passing through each of the candidate children nodes.

〈Choose split axis position for interior node〉 ≡ 234

int bestAxis = -1, bestOffset = -1;
float bestCost = INFINITY;
float oldCost = isectCost * float(nPrimitives);
float totalSA = nodeBounds.SurfaceArea();
float invTotalSA = 1.f / totalSA;
Vector d = nodeBounds.pMax - nodeBounds.pMin;
〈Choose which axis to split along 236〉
int retries = 0;
retrySplit:
〈Initialize edges for axis 236〉
〈Compute cost of all splits for axis to find best 237〉

This method first tries to find a split along the axis with the largest spatial extent; if
successful, this choice helps to give regions of space that tend toward being square in
shape. This is an intuitively sensible approach. Later, if it was unsuccessful in finding a
good split along this axis, it will go back and try the others in turn.

〈Choose which axis to split along〉 ≡ 236

uint32_t axis = nodeBounds.MaximumExtent();

First the edges array for the axis is initialized using the bounding boxes of the overlapping
primitives. The array is then sorted from low to high along the axis so that it can sweep
over the box edges from first to last.

〈Initialize edges for axis〉 ≡ 236

for (int i = 0; i < nPrimitives; ++i) {
int pn = primNums[i];
const BBox &bbox = allPrimBounds[pn];
edges[axis][2*i] = BoundEdge(bbox.pMin[axis], pn, true);
edges[axis][2*i+1] = BoundEdge(bbox.pMax[axis], pn, false);

}
sort(&edges[axis][0], &edges[axis][2*nPrimitives]);

The C++ standard library routine sort() requires that the structure being sorted define
an ordering; this is done using the BoundEdge::t values. However, one subtlety is that if
the BoundEdge::t values match, it is necessary to try to break the tie by comparing the
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node’s types; this is necessary since sort() depends on the fact that the only time a < b
and b < a are both false is when a == b.

〈BoundEdge Public Methods〉 +≡ 235

bool operator<(const BoundEdge &e) const {
if (t == e.t)

return (int)type < (int)e.type;
else return t < e.t;

}

Given the sorted array of edges, we’d like to quickly compute the cost function for a split
at each one of them. The probabilities for a ray passing through each child node are easily
computed using their surface areas, and the number of primitives on each side of the split
is tracked by the variables nBelow and nAbove. We would like to keep their values updated
such that if we chose to split at edget for a particular pass through the loop, nBelow will
give the number of primitives that would end up below the splitting plane and nAbove
would give the number above it.8

At the first edge, all primitives must be above that edge by definition, so nAbove is
initialized to nPrimitives and nBelow is set to zero. When the loop is considering a split
at the end of a bounding box’s extent, nAbove needs to be decremented, since that box,
which must have previously been above the splitting plane, will no longer be above it if
splitting is done at the point. Similarly, after calculating the split cost, if the split candidate
was at the start of a bounding box’s extent, then the box will be on the below side for all
subsequent splits. The tests at the start and end of the loop body update the primitive
counts for these two cases.

〈Compute cost of all splits for axis to find best〉 ≡ 236

int nBelow = 0, nAbove = nPrimitives;
for (int i = 0; i < 2*nPrimitives; ++i) {

if (edges[axis][i].type == BoundEdge::END) --nAbove;
float edget = edges[axis][i].t;
if (edget > nodeBounds.pMin[axis] &&

edget < nodeBounds.pMax[axis]) {
〈Compute cost for split at ith edge 238〉

}
if (edges[axis][i].type == BoundEdge::START) ++nBelow;

}

Given all of this information, the cost for a particular split can be computed. belowSA
and aboveSA hold the surface areas of the two candidate child bounds; they are easily
computed by adding up the areas of the six faces.

8 When multiple bounding box faces project to the same point on the axis, this invariant may not be true at those points.
However, as implemented here it will only overestimate the counts and, more importantly, will have the correct value for one
of the multiple times through the loop at each of those points, so the algorithm functions correctly in the end anyway.
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Figure 4.15: If multiple bounding boxes (dotted lines) overlap a kd-tree node (solid lines) as shown
here, there is no possible split position that can result in fewer than all of the primitives being on both
sides of it.

〈Compute cost for split at ith edge〉 ≡ 237

uint32_t otherAxis0 = (axis + 1) % 3, otherAxis1 = (axis + 2) % 3;
float belowSA = 2 * (d[otherAxis0] * d[otherAxis1] +

(edget - nodeBounds.pMin[axis]) *
(d[otherAxis0] + d[otherAxis1]));

float aboveSA = 2 * (d[otherAxis0] * d[otherAxis1] +
(nodeBounds.pMax[axis] - edget) *
(d[otherAxis0] + d[otherAxis1]));

float pBelow = belowSA * invTotalSA;
float pAbove = aboveSA * invTotalSA;
float eb = (nAbove == 0 || nBelow == 0) ? emptyBonus : 0.f;
float cost = traversalCost +

isectCost * (1.f - eb) * (pBelow * nBelow + pAbove * nAbove);
〈Update best split if this is lowest cost so far 238〉

If the cost computed for this candidate split is the best one so far, the details of the split
are recorded.

〈Update best split if this is lowest cost so far〉 ≡ 238

if (cost < bestCost) {
bestCost = cost;
bestAxis = axis;
bestOffset = i;

}

It may happen that there are no possible splits found in the previous tests (Figure 4.15
illustrates a case where this may happen). In this case, there isn’t a single candidate
position at which to split the node along the current axis. At this point, splitting is tried
for the other two axes in turn. If neither of them can find a split (when retries is equal
to two), then there is no useful way to refine the node, since both children will still have
the same number of overlapping primitives. When this condition occurs, all that can be
done is to give up and make a leaf node.
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It is also possible that the best split will have a cost that is still higher than the cost for not
splitting the node at all. If it is substantially worse and there aren’t too many primitives,
a leaf node is made immediately. Otherwise, badRefines keeps track of how many bad
splits have been made so far above the current node of the tree. It’s worth allowing a few
slightly poor refinements since later splits may be able to find better ones given a smaller
subset of primitives to consider.

〈Create leaf if no good splits were found〉 ≡ 234

if (bestAxis == -1 && retries < 2) {
++retries;
axis = (axis+1) % 3;
goto retrySplit;

}
if (bestCost > oldCost) ++badRefines;
if ((bestCost > 4.f * oldCost && nPrimitives < 16) ||

bestAxis == -1 || badRefines == 3) {
nodes[nodeNum].initLeaf(primNums, nPrimitives, arena);
return;

}

Having chosen a split position, the bounding box edges can be used to classify the
primitives as being above, below, or on both sides of the split in the same way as was
done to keep track of nBelow and nAbove in the earlier code. Note that the bestOffset
entry in the arrays is skipped in the loops below; this is necessary so that the primitive
whose bounding box edge was used for the split isn’t incorrectly categorized as being on
both sides of the split.

〈Classify primitives with respect to split〉 ≡ 234

int n0 = 0, n1 = 0;
for (int i = 0; i < bestOffset; ++i)

if (edges[bestAxis][i].type == BoundEdge::START)
prims0[n0++] = edges[bestAxis][i].primNum;

for (int i = bestOffset+1; i < 2*nPrimitives; ++i)
if (edges[bestAxis][i].type == BoundEdge::END)

prims1[n1++] = edges[bestAxis][i].primNum;

Recall that the node number of the “below” child of this node in the kd-tree nodes array
is the current node number plus one. After the recursion has returned from that side of
the tree, the nextFreeNode offset is used for the “above” child. The only other important
detail here is that the prims0 memory is passed directly for reuse by both children,
while the prims1 pointer is advanced forward first. This is necessary since the current
invocation of KdTreeAccel::buildTree() depends on its prims1 values being preserved
over the first recursive call to KdTreeAccel::buildTree() in the following, since it must
be passed as a parameter to the second call. However, there is no corresponding need
to preserve the edges values or to preserve prims0 beyond its immediate use in the first
recursive call.
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〈Recursively initialize children nodes〉 ≡ 234

float tsplit = edges[bestAxis][bestOffset].t;
BBox bounds0 = nodeBounds, bounds1 = nodeBounds;
bounds0.pMax[bestAxis] = bounds1.pMin[bestAxis] = tsplit;
buildTree(nodeNum+1, bounds0,

allPrimBounds, prims0, n0, depth-1, edges,
prims0, prims1 + nPrimitives, badRefines);

uint32_t aboveChild = nextFreeNode;
nodes[nodeNum].initInterior(bestAxis, aboveChild, tsplit);
buildTree(aboveChild, bounds1, allPrimBounds, prims1, n1,

depth-1, edges, prims0, prims1 + nPrimitives, badRefines);

Thus, much more space is needed for the prims1 array of integers for storing the worst-
case possible number of overlapping primitive numbers than for the prims0 array, which
only needs to handle the primitives at a single level at a time.

〈Allocate working memory for kd-tree construction〉 +≡ 232

uint32_t *prims0 = new uint32_t[primitives.size()];
uint32_t *prims1 = new uint32_t[(maxDepth+1) * primitives.size()];

4.5.3 TRAVERSAL

Figure 4.16 shows the basic process of ray traversal through the tree. Intersecting the ray
with the tree’s overall bounds gives initial tmin and tmax values, marked with points in the
figure. As with the other accelerators in this chapter, if the ray misses the scene bounds,
this method can immediately return false. Otherwise, it starts to descend into the tree,
starting at the root. At each interior node, it determines which of the two children the ray
enters first and processes both children in order. Traversal ends either when the ray exits
the tree or when the closest intersection is found.

〈KdTreeAccel Method Definitions〉 +≡
bool KdTreeAccel::Intersect(const Ray &ray,

Intersection *isect) const {
〈Compute initial parametric range of ray inside kd-tree extent 240〉
〈Prepare to traverse kd-tree for ray 241〉
〈Traverse kd-tree nodes in order for ray 242〉

}

The algorithm starts by finding the overall parametric range [tmin, tmax] of the ray’s
overlap with the tree, exiting immediately if there is no overlap.

〈Compute initial parametric range of ray inside kd-tree extent〉 ≡ 240

float tmin, tmax;
if (!bounds.IntersectP(ray, &tmin, &tmax))

return false;

The array of KdToDo structures is used to record the nodes yet to be processed for the
ray; it is ordered so that the last active entry in the array is the next node that should
be considered. The maximum number of entries needed in this array is the maximum
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Figure 4.16: Traversal of a Ray through the Kd-Tree. (a) The ray is intersected with the bounds of
the tree, giving an initial parametric [tmin, tmax] range to consider. (b) Because this range is nonempty,
it is necessary to consider the two children of the root node here. The ray first enters the child
on the right, labeled “near,” where it has a parametric range [tmin, tsplit]. If the near node is a leaf
with primitives in it, ray–primitive intersection tests are performed; otherwise, its children nodes
are processed. (c) If no hit is found in the node, or if a hit is found beyond [tmin, tsplit], then the far
node, on the left, is processed. (d) This sequence continues—processing tree nodes in a depth-first,
front-to-back traversal—until the closest intersection is found or the ray exits the tree.

depth of the kd-tree; the array size used in the following should be more than enough in
practice.

〈Prepare to traverse kd-tree for ray〉 ≡ 240

Vector invDir(1.f/ray.d.x, 1.f/ray.d.y, 1.f/ray.d.z);
#define MAX_TODO 64
KdToDo todo[MAX_TODO];
int todoPos = 0;

〈KdTreeAccel Declarations〉 +≡
struct KdToDo {

const KdAccelNode *node;
float tmin, tmax;

};

The traversal continues through the nodes, processing a single leaf or interior node each
time through the loop. The values tmin and tmax will always hold the parametric range
for the ray’s overlap with the current node.
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〈Traverse kd-tree nodes in order for ray〉 ≡ 240

bool hit = false;
const KdAccelNode *node = &nodes[0];
while (node != NULL) {

〈Bail out if we found a hit closer than the current node 242〉
if (!node->IsLeaf()) {

〈Process kd-tree interior node 242〉
}
else {

〈Check for intersections inside leaf node 244〉
〈Grab next node to process from todo list 245〉

}
}
return hit;

An intersection may have been previously found in a primitive that overlaps multiple
nodes. If the intersection was outside the current node when first detected, it is necessary
to keep traversing the tree until we come to a node where tmin is beyond the intersection.
Only then is it certain that there is no closer intersection with some other primitive.

〈Bail out if we found a hit closer than the current node〉 ≡ 242

if (ray.maxt < tmin) break;

For interior tree nodes the first thing to do is to intersect the ray with the node’s splitting
plane; given the intersection point, we can determine if one or both of the children nodes
need to be processed and in what order the ray passes through them.

〈Process kd-tree interior node〉 ≡ 242

〈Compute parametric distance along ray to split plane 242〉
〈Get node children pointers for ray 243〉
〈Advance to next child node, possibly enqueue other child 244〉

The parametric distance to the split plane is computed in the same manner as was done
in computing the intersection of a ray and an axis-aligned plane for the ray–bounding
box test. We use the precomputed invDir value to save a divide each time through the
loop.

〈Compute parametric distance along ray to split plane〉 ≡ 242

int axis = node->SplitAxis();
float tplane = (node->SplitPos() - ray.o[axis]) * invDir[axis];

Now it is necessary to determine the order in which the ray encounters the children
nodes, so that the tree is traversed in front-to-back order along the ray. Figure 4.17 shows
the geometry of this computation. The position of the ray’s origin with respect to the
splitting plane is enough to distinguish between the two cases, ignoring for now the case
where the ray doesn’t actually pass through one of the two nodes. The rare case when the
ray’s origin lies on the splitting plane requires careful handling in this case, as its direction
needs to be used instead to discriminate between the two cases.
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Figure 4.17: The position of the origin of the ray with respect to the splitting plane can be used to
determine which of the node’s children should be processed first. If the origin of a ray like r1 is on
the “below” side of the splitting plane, we should process the below child before the above child,
and vice versa.
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Figure 4.18: Two cases where both children of a node don’t need to be processed because the ray
doesn’t overlap them. (a) The top ray intersects the splitting plane beyond the ray’s tmax position and
thus doesn’t enter the far child. The bottom ray is facing away from the splitting plane, indicated by
a negative tsplit value. (b) The ray intersects the plane before the ray’s tmin value, indicating that the
near child doesn’t need processing.

〈Get node children pointers for ray〉 ≡ 242

const KdAccelNode *firstChild, *secondChild;
int belowFirst = (ray.o[axis] < node->SplitPos()) ||

(ray.o[axis] == node->SplitPos() && ray.d[axis] >= 0);
if (belowFirst) {

firstChild = node + 1;
secondChild = &nodes[node->AboveChild()];

}
else {

firstChild = &nodes[node->AboveChild()];
secondChild = node + 1;

}

It may not be necessary to process both children of this node. Figure 4.18 shows some
configurations where the ray only passes through one of the children. The ray will never
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miss both children, since otherwise the current interior node should never have been
traversed.

The first if test in the following code corresponds to Figure 4.18(a): only the near node
needs to be processed if it can be shown that the ray doesn’t overlap the far node because
it faces away from it or doesn’t overlap it because tsplit > tmax. Figure 4.18(b) shows the
similar case tested in the second if test: the near node may not need processing if the ray
doesn’t overlap it. Otherwise, the else clause handles the case of both children needing
processing; the near node will be processed next, and the far node goes on the todo list.

〈Advance to next child node, possibly enqueue other child〉 ≡ 242

if (tplane > tmax || tplane <= 0)
node = firstChild;

else if (tplane < tmin)
node = secondChild;

else {
〈Enqueue secondChild in todo list 244〉
node = firstChild;
tmax = tplane;

}

〈Enqueue secondChild in todo list〉 ≡ 244

todo[todoPos].node = secondChild;
todo[todoPos].tmin = tplane;
todo[todoPos].tmax = tmax;
++todoPos;

If the current node is a leaf, intersection tests are performed against the primitives in the
leaf.

〈Check for intersections inside leaf node〉 ≡ 242

uint32_t nPrimitives = node->nPrimitives();
if (nPrimitives == 1) {

const Reference<Primitive> &prim = primitives[node->onePrimitive];
〈Check one primitive inside leaf node 244〉

}
else {

uint32_t *prims = node->primitives;
for (uint32_t i = 0; i < nPrimitives; ++i) {

const Reference<Primitive> &prim = primitives[prims[i]];
〈Check one primitive inside leaf node 244〉

}
}

Processing an individual primitive is just a matter of passing the intersection request on
to the primitive.

〈Check one primitive inside leaf node〉 ≡ 244

if (prim->Intersect(ray, isect))
hit = true;
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After doing the intersection tests at the leaf node, the next node to process is loaded from
the todo array. If no more nodes remain, then the ray has passed through the tree without
hitting anything.

〈Grab next node to process from todo list〉 ≡ 242

if (todoPos > 0) {
--todoPos;
node = todo[todoPos].node;
tmin = todo[todoPos].tmin;
tmax = todo[todoPos].tmax;

}
else

break;

Like the GridAccel and BVHAccel, the KdTreeAccel has a specialized intersection method
for shadow rays that is not shown here. It is similar to the KdTreeAccel::Intersect()
method, just calling Primitive::IntersectP() method and returning true as soon as it
finds any intersection without worrying about finding the closest one.

〈KdTreeAccel Public Methods〉 ≡ 228

bool IntersectP(const Ray &ray) const;

4.6 DEBUGGING AGGREGATES

Bugs in aggregates can be notoriously difficult to find and fix; once an aggregate im-
plementation mostly works, the difficulty is that it does the correct thing for almost all
of the rays that it’s given and it’s only a very small subset where a bug manifests itself.
Even worse, the bug may be due to a small error made back when the acceleration struc-
ture was first built. Working backward from a ray with an incorrect intersection to the
original source of the bug can be a very tedious process. We have learned some effective
techniques and built some useful testing infrastructure for debugging aggregates that we
will discuss here.

First, we need to define what a correct result for an intersection calculation is. We will say
that given a ray and a collection of primitives, the correct intersection result is a primitive
the ray hits with minimum t value along the ray, subject to the ray’s parametric mint-maxt
range, so long as the ray also intersects the bounding box returned by the primitive.

There are a few subtleties in this statement. One is that it is possible that multiple prim-
itives will report an intersection at the same t value. In this case, we say that a correct
answer is an intersection with any of those primitives. It’s not worth the implementa-
tion complexity to define a more specific requirement—for example, that the primitive
that appeared first in the input file must be reported; this constraint would make accel-
erator implementations needlessly complex and introduce overhead that’s not generally
worthwhile for rendering.

The second subtlety stems from small numeric inconsistencies between the primitive’s
bounding box and the primitive’s intersection routine. There may be rays that are re-
ported to not intersect the bounding box, yet the primitive’s Intersect() method may
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report intersection. Even if the bounding box provided by the primitive is correct (i.e.,
it fully encompasses the primitive’s spatial extent), it is possible that the inevitable small
errors from floating-point roundoff in the BBox::IntersectP() routine will mean that
a ray is reported to not intersect the bounding box even though the primitive’s inter-
section method reports that the ray does in fact intersect it.9 It’s also not reasonable to
require accelerators to report only primitive intersections where the ray also intersects
the primitive’s bounding box: for example, the grid accelerator tests the ray against all
of the primitives in a grid voxel, regardless of whether it intersects their bounding boxes;
for that algorithm, there isn’t any reason to also test the ray against all of the primitives’
bounding boxes given the knowledge that the primitive’s bound overlapped the grid voxel
and the ray passes through the grid voxel.

Given all this, for the purposes of defining a correct accelerator, we will therefore also
say that primitive intersections where the ray is not found to intersect the bounding box
are not expected to be found by the accelerator, but that it is also not incorrect for an
accelerator to report such an intersection.

This definition of correctness for intersection computations means that valid image dif-
ferences can occur when a scene is rendered with different accelerators. For example, one
may choose one instance of an ambiguous intersection, where two or more primitives re-
port an intersection with the same t value, and the other accelerator may report another
instance. Even if this were not the case, testing and debugging accelerators by comparing
image differences is somewhat unwieldy; given a small difference in two rendered im-
ages, working backward to find a bug in an accelerator that led to that difference can be
a significant debugging chore.

4.6.1 FINDING BUGS IN AGGREGATES

pbrt provides an AggregateTest Renderer for testing aggregate implementations. Its im-
plementation is straightforward: given a scene, it generates a large number of random
rays in the scene and first traces each one using whichever accelerator was specified in
the scene’s description file. It then exhaustively tests the ray for intersection against every
primitive in the scene. If the results are inconsistent (subject to the definition of a cor-
rect intersection calculation above), then the accelerator being tested must have a bug.
Information about these rays is printed for use in later debugging runs. AggregateTest is
found in the files renderers/aggregatetest.h and renderers/aggregatetest.cpp.

Finding and fixing bugs using directed tests like these is generally much easier than
finding and fixing them after seeing a surprising error in an image. Isolating a single
ray where the accelerator is not computing the right result helps narrow the debugging
problem; to the extent that automated tests like those here can find instances of bugs, the
easier the debugging process is. Another significant advantage of targeted testing code
is that, when one makes changes to the system, one can run the tests and ensure that a
subtle bug hasn’t been introduced by the tests; the returns from the work to implement
tests like these in the first place are generally worthwhile.

9 This shortcoming presumably could be addressed through careful analysis of the roundoff error in the BBox::IntersectP()
routine and by appropriate modifications to it to ensure that the computation is sufficiently conservative that this problem
doesn’t occur.



AggregateTest::
nIterations 247

BBox 70

BBox::Expand() 72

Point 63

Primitive 185

Ray 66

Reference 1011

RNG 1003

Scene 22

Scene::WorldBound() 24

SECTION 4.6 DEBUGG ING AGGREGATES 247

The AggregateTest constructor is not included here; it fully refines all of the primitives
passed to it, computes their bounding boxes, and stores a count of the number of test
iterations to run.

〈AggregateTest Private Data〉 ≡
int nIterations;
vector<Reference<Primitive> > primitives;
vector<BBox> bboxes;

Testing is done in the Render() method. It first computes a bounding box that is moder-
ately larger than the full scene extent; random rays will be generated inside this bounding
box. It then runs for the number of requested iterations, generating random rays and
computing intersections with them.

〈AggregateTest Method Definitions〉 ≡
void AggregateTest::Render(const Scene *scene) {

RNG rng;
〈Compute bounding box of region used to generate random rays 247〉
Point lastHit;
float lastEps = 0.f;
for (int i = 0; i < nIterations; ++i) {

〈Choose random rays, rayAccel and rayAll for testing 247〉
〈Compute intersections using accelerator and exhaustive testing 248〉
〈Report any inconsistencies between intersections 249〉

}
}

〈Compute bounding box of region used to generate random rays〉 ≡ 247

BBox bbox = scene->WorldBound();
bbox.Expand(bbox.pMax[bbox.MaximumExtent()] -

bbox.pMin[bbox.MaximumExtent()]);

The 〈Choose random rays, rayAccel and rayAll for testing〉 generates random rays in
the scene. Its goal is to be as efficient as possible at generating rays that are likely to be
troublesome and expose corner cases in the implementations of accelerators.10

〈Choose random rays, rayAccel and rayAll for testing〉 ≡ 247

〈Choose ray origin for testing accelerator 248〉
〈Choose ray direction for testing accelerator 248〉
〈Choose ray epsilon for testing accelerator 248〉
Ray rayAccel(org, dir, eps);
Ray rayAll = rayAccel;

The ray origin is chosen in one of two ways: either as a random point inside the scene’s
bounding box or at the surface hit by the previous ray. Starting some of the rays on
(or, strictly speaking, near) scene surfaces is important; not only are the majority of

10 Another effective approach for generating these testing rays would be to log all of the rays generated during the regular
process of rendering the scene and then rerun them through this testing code to make sure the intersection results are
consistent. This modification is left for an exercise at the end of the chapter.
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rays traced in the process of rendering rays leaving intersected surfaces, but errors from
incorrect intersection computations from these rays aren’t always easily visible. If rays
from the camera have egregiously wrong intersection results, the bug will be obviously
visible in the rendered image. Rays reflected from surfaces that have wrong intersection
results may not have as obvious a visual manifestation.

〈Choose ray origin for testing accelerator〉 ≡ 247

Point org(Lerp(rng.RandomFloat(), bbox.pMin.x, bbox.pMax.x),
Lerp(rng.RandomFloat(), bbox.pMin.y, bbox.pMax.y),
Lerp(rng.RandomFloat(), bbox.pMin.z, bbox.pMax.z));

if ((rng.RandomUInt() % 4) == 0) org = lastHit;

The ray direction is usually chosen by randomly selecting a direction. However, occasion-
ally setting two of the direction vectors to zero is worthwhile: rays parallel to a coordinate
axis can be problematic, so exercising this case is useful.

〈Choose ray direction for testing accelerator〉 ≡ 247

Vector dir = UniformSampleSphere(rng.RandomFloat(), rng.RandomFloat());
if ((rng.RandomUInt() % 32) == 0) dir.x = dir.y = 0.f;
else if ((rng.RandomUInt() % 32) == 0) dir.x = dir.z = 0.f;
else if ((rng.RandomUInt() % 32) == 0) dir.y = dir.z = 0.f;

Finally, the “epsilon” value for the ray (the minimum parameteric distance before which
intersections are ignored) is chosen. The implementation randomly chooses between
three typical values—zero, the epsilon value returned at the last surface intersection, and
a small floating-point value.

〈Choose ray epsilon for testing accelerator〉 ≡ 247

float eps = 0.f;
if (rng.RandomFloat() < .25) eps = lastEps;
else if (rng.RandomFloat() < .25) eps = 1e-3f;

Given the ray, AggregateTest uses both the regular Aggregate and an exhaustive test of all
primitives in the scene to check for intersections. Note that it checks for the case where
the ray is not reported to intersect the bounding box but still hits the geometry here,
setting inconsistentBounds in that case. Inconsistent intersections for these rays won’t
be reported.

〈Compute intersections using accelerator and exhaustive testing〉 ≡ 247

Intersection isectAccel, isectAll;
bool hitAccel = scene->Intersect(rayAccel, &isectAccel);
bool hitAll = false;
bool inconsistentBounds = false;
for (uint32_t j = 0; j < primitives.size(); ++j) {

if (bboxes[j].IntersectP(rayAll))
hitAll |= primitives[j]->Intersect(rayAll, &isectAll);

else if (primitives[j]->Intersect(rayAll, &isectAll))
inconsistentBounds = true;

}
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As long as no intersections were found where the ray hit the primitive but not its bound-
ing box, then if the exhaustive test and the accelerator compute different parametric t

values for the intersection point, a warning is printed here, including information about
the origin and direction of the ray that exhibits the bug. Rather than use the conventional
%f printf() formatting for the floating-point values, the code here uses %a, which prints
the given value as a hexidecimal floating-point value. For example, the value 2.5 is printed
0x1.4p+1. This representation of floating-point values is useful in that it is guaranteed to
represent the floating-point value exactly, without any roundoff error. (In contrast, the
number will generally be rounded when using %f.) It’s important that the ray that ex-
hibits the bug be stored precisely, since a slight perturbation to it may not exhibit the bug
any more.

〈Report any inconsistencies between intersections〉 ≡ 247

if (!inconsistentBounds &&
((hitAccel != hitAll) || (rayAccel.maxt != rayAll.maxt)))
Warning("Disagreement: t accel %.16g [%a] t exhaustive %.16g [%a]\n"

"Ray: org [%a, %a, %a], dir [%a, %a, %a], mint = %a",
rayAccel.maxt, rayAll.maxt, rayAccel.maxt, rayAll.maxt,
rayAll.o.x, rayAll.o.y, rayAll.o.z,
rayAll.d.x, rayAll.d.y, rayAll.d.z, rayAll.mint);

if (hitAll) {
lastHit = rayAll(rayAll.maxt);
lastEps = isectAll.rayEpsilon;

}

4.6.2 FIXING BUGS IN AGGREGATES

Finding a ray, scene, and accelerator where an incorrect intersection is found is only a
start; tracking down the actual bug from this point is not easy. The first step in fixing this
sort of bug is to determine which primitive is the one that should have been determined
to be the closest intersecting primitive—from there, the question is “Why wasn’t the ray
found to intersect with it?” Adding code to the accelerator’s constructor to immediately
trace the ray that was found to hit the bug after the acceleration data structure is built
gives an easy point at which to set a breakpoint in the debugger.

For accelerators based on spatial subdivision, one can take the position of the missed
intersection and determine which spatial region the intersection point lies in. (The inter-
section point may also lie on the boundary between two nodes, which can be a problem-
atic case for implementations.) The bug then must come from one of two causes:

. There is an error in the traversal code, and the ray never passes through the node
where the intersection lies.

. Or, there is an error in the code that builds the accelerator, and the primitive is not
present in the node where the intersection occurs.

For example, when traversing a spatial data structure, if the ray doesn’t pass through the
node that holds the geometry, then at some parent of that node the traversal code will
make an incorrect decision and decide to not recurse down to the subtree that has the
node with the intersection. Finding the node where the intersection occurs and from that
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the path from the root of the tree to that node makes it possible to isolate where this error
happens. Alternatively, if the ray passes through that node but the primitive isn’t present
in it, then the construction code needs to be examined to figure out why the primitive
wasn’t included in the node.

For accelerators based on primitive subdivision, the task is similar. The primitive that
should have been hit will be present in one or more nodes of the data struture; the
question again is “Why didn’t the ray visit those nodes, or if it did, then why wasn’t an
intersection found?”

Drilling down to the source of these bugs can often be done more easily by instrumenting
the code with printf() calls that show what the system is doing (as it traverses the
data structure or builds it, respectively). We have found that after narrowing down to
a scene and ray that exhibits a bug, that a mixture of both printing detailed information
about the code’s execution and stepping through execution in a debugger is effective. One
advantage of printing out a trace of the execution of the code is that it can be easier to
work forward and backward through the trace file to find the source of error.

4.6.3 AGGREGATE PERFORMANCE BUGS

Beyond correctness bugs, errors that cause performance problems can be nefarious and
difficult to find—with these bugs, although the system still computes the correct result,
it just does so very inefficiently. An example of this type of bug was present in the
first version of the pbrt system: due to a subtle bug in code that computed specular
refraction directions, rays with floating-point “not a number” values for their direction
components would very rarely be generated when rendering the ecosystem scene in
Figure 4.1. When given a ray with NaN direction components, the kd-tree accelerator
traversal code will visit every node in the entire tree. For the ecosystem scene, this meant
that these rays would be tested for intersection with all 19 million triangles in the scene.
This is obviously extremely wasteful, but it only happened for a handful of rays in the
scene, so the overall rendering time wasn’t sufficiently bad to be obviously wrong. When
we found and fixed this bug, performance rendering that scene increased by a factor of
three.

The best approach we have found to finding these sorts of bugs is to liberally gather
statistics about the code’s execution and to use visualization tools to understand its
behavior. For example, simple code to track the maximum number of ray–primitive
intersection tests for all the rays traced during rendering would have made it obvious
that, for at least one ray, over 19 million intersection tests were being performed. From
this insight, working backward to figure out which ray was the culprit and then why this
was the case would have been relatively straightforward.

FURTHER READING

After the introduction of the ray-tracing algorithm, an enormous amount of research
was done to try to find effective ways to speed it up, primarily by developing improved
ray-tracing acceleration structures. Arvo and Kirk’s chapter in An Introduction to Ray
Tracing (Glassner 1989a) summarizes the state of the art as of 1989 and still provides an
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excellent taxonomy for categorizing different approaches to ray intersection acceleration.
Ray Tracing News (www.acm.org/tog/resources/RTNews/) is a very good resource for gen-
eral ray-tracing information and has particularly useful discussions about intersection
acceleration approaches, implementation issues, and tricks of the trade.

Kirk and Arvo (1988) introduced the unifying principle of meta-hierarchies. They showed
that by implementing acceleration data structures to conform to the same interface as
is used for primitives in the scene, it’s easy to mix and match multiple intersection
acceleration schemes. pbrt follows this model since the Aggregate inherits from the
Primitive base class.

In the interests of making it easier to compare the performance of different ray inter-
section algorithms, there have been some efforts to create standard databases of scenes
to test various ray intersection algorithms, notably Haines’s “standard procedural data-
base” (SPD) (Haines 1987) and Lext et al.’s BART scenes, which include animation (Lext,
Assarsson, and Möller 2001). A few of the SPD scenes are available in the pbrt file format
in the pbrt distribution.

Grids
Fujimoto, Tanaka, and Iwata (1986) were the first to introduce uniform voxel grids for
ray tracing, similar to the approach implemented in this chapter. Snyder and Barr (1987)
described a number of key improvements to this approach and showed their use for
rendering extremely complex scenes. Hierarchical grids were first described by Jevans and
Wyvill (1989). More complex techniques for hierarchical grids were developed by Cazals,
Drettakis, and Puech (1995) and Klimaszewski and Sederberg (1997). The grid traversal
method used in this chapter is essentially the one described by Cleary and Wyvill (1988).

Choosing an optimal grid resolution has received attention from a number of researchers.
A recent paper in this area is by Ize et al. (2007), who provided a solid foundation for
selecting an optimal grid resolution and for deciding when to refine into subgrids, when
hierarchical grids are being used. They derived theoretical results using a number of
simplifying assumptions and then showed the applicability of the results to rendering
real-world scenes. They also included a good selection of pointers to previous work in
this area.

Lagae and Dutré (2008a) described an innovative representation for uniform grids that
has the desirable properties that not only does each primitive have a single index into a
voxel, but each voxel has only a single primitive index. They show that this representation
has very low memory usage and is still quite efficient.

Hunt and Mark (2008) showed that building grids in perspective space, where the center
of projection is the camera or a light source, can make tracing rays from the camera or
light substantially more efficient. Although this approach requires multiple acceleration
structures, the performance benefits from multiple specialized structures for different
classes of rays can be substantial. Their approach is also notable in that it is in some ways
a middle-ground between rasterization and ray tracing.

Bounding Volume Hierarchies
Clark (1976) first suggested using bounding volumes to cull collections of objects for
standard visible-surface determination algorithms. Building on this work, Rubin and
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Whitted (1980) developed the first hierarchical data structures for scene representation
for fast ray tracing, although their method depended on the user to define the hierar-
chy. Kay and Kajiya (1986), implemented one of the first practical object subdivision
approaches based on bounding objects with collections of slabs.

Goldsmith and Salmon (1987) described an algorithm for automatically computing
bounding volume hierarchies and applied techniques for estimating the probability of
a ray intersecting a bounding volume based on the volume’s surface area. Most current
methods for building BVHs are based on top-down construction of the tree, first creating
the root node and then partitioning the primitives into children and continuing recur-
sively. An alternative approach was demonstrated by Walter et al. (2008), who showed
that bottom-up construction, where the leaves are created first and then agglomerated
into parent nodes, is viable and can build somewhat better trees than top-down ap-
proaches. Kensler (2008) presented algorithms that make local adjustments to the BVH
tree after it has been built to improve its quality.

The BVHAccel implementation in this chapter is based on the construction algorithm
described by Wald (2007) and Gunther et al. (2007). The bounding box test is the one
introduced by Williams et al. (2005). An even more efficient bounding box test that does
additional precomputation in exchange for higher performance when the same ray is
tested for intersection against many bounding boxes was developed by Eisemann et al.
(2007); we leave implementing their method for an exercise.

The BVH traversal algorithm used in pbrt was concurrently developed by a number of
researchers; see the notes by Boulos and Haines (2006) for more details and background.
Another option for tree traversal is that of Kay and Kajiya (1986); they maintained a heap
of nodes ordered by ray distance.

One shortcoming of BVHs is that even a small number of relatively large primitives that
have overlapping bounding boxes can substantially reduce the efficiency of the BVH:
many of the nodes of the tree will be overlapping, solely due to the overlapping bounding
boxes of geometry down at the leaves. Ernst and Greiner (2007) proposed “split clipping”
as a solution to this problem; the restriction that each primitive only appears once in
the tree is lifted, and the bounding boxes of large input primitives are subdivided into a
set of tighter sub-bounds which are then used for tree construction. This happens only
during the tree construction and doesn’t affect the tree representation or the rendering
algorithm. Dammertz and Keller (2008) observed that the problematic primitives are the
ones with a large amount of empty space in their bounding box relative to their surface
area, so they subdivided the most egregious triangles and reported substantial perfor-
mance improvements. Stich et al. (2009) developed an approach that splits primitives
during BVH construction, rather than as a preprocess, making it possible to only split
primitives when a SAH cost reduction was found. See also Popov et al.’s recent paper
on a theoretically optimum BVH partitioning algorithm and its relationship to previous
approaches (Popov et al. 2009).

The memory requirements for BVHs can be substantial. In our implementation, each
node is 32 bytes. With up to 2 BVH tree nodes needed per primitive in the scene, the to-
tal overhead may be as high as 64 bytes per primitive. Cline et al. (2006) suggested a more
compact representation for BVH nodes, at some expense of efficiency. First, they quan-
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tized the bounding box stored in each node using 8 or 16 bytes to offset with respect to
the bounding box of the entire tree. Second, they used implicit indexing , where the node
i’s children are at positions 2i and 2i + 1 in the node array (assuming a 2× branching
factor). They showed substantial memory savings, with moderate performance impact.
See also Mahovsky’s Ph.D. thesis (2005) for other approaches to reducing BVH memory
usage.

Yoon and Manocha (2006) described algorithms for cache-efficient layout of BVHs and
kd-trees and demonstrated performance improvements from doing so. See also Ericson’s
book (2004) for extensive discussion of this topic.

kd-trees
Glassner (1984) introduced the use of octrees for ray intersection acceleration; this ap-
proach was more robust for scenes with nonuniform distributions of geometry than
grids. Use of the kd-tree was first described by Kaplan (1985). Kaplan’s tree construction
algorithm always split nodes down their middle; MacDonald and Booth (1990) intro-
duced the surface area heuristic approach, estimating ray–node traversal probabilities
using relative surface areas. Naylor (1993) has also written on general issues of con-
structing good kd-trees. Havran and Bittner (2002) revisited many of these issues and
introduced useful improvements. Adding a bonus factor to the surface area heuristic for
tree nodes that are completely empty, as is done in our implementation, was suggested
by Hurley et al. (2002).

Jansen (1986) first developed the efficient ray traversal algorithm for kd-trees. Arvo also
investigated this problem and discussed it in a note in Ray Tracing News (Arvo 1988).
Sung and Shirley (1992) described a ray traversal algorithm’s implementation for a BSP-
tree accelerator; our KdTreeAccel traversal code is loosely based on theirs.

The asymptotic complexity of the kd-tree construction algorithm in pbrt is O(n log2 n).
Wald and Havran (2006) showed that it’s possible to build kd-trees in (n log n) time
with some additional implementation complexity; they reported a 2 to 3× speedup in
construction time for typical scenes.

The best kd-trees for ray tracing are built using “perfect splits,” where the primitive being
inserted into the tree is clipped to the bounds of the current node at each step. This
eliminates the issue that, for example, an object’s bounding box may intersect a node’s
bounding box and thus be stored in it, even though the object itself doesn’t intersect the
node’s bounding box. This approach was introduced by Havran and Bittner (2002) and
discussed further by Hurley et al. (2002) and Wald and Havran (2006). See also Soupikov
et al. (2008).

kd-tree construction tends to be much slower than BVH construction (especially if “per-
fect splits” are used), so parallel construction algorithms are of particular interest. Recent
work in this area includes that of Shevtsov et al. (2007b), who presented an efficient par-
allel kd-tree construction algorithm with good scalability to multiple processors.

The Surface Area Heuristic
A number of researchers have investigated improvements to the surface area heuristic
since its introduction to ray tracing by MacDonald and Booth (1990). Fabianowski et al.
(2009) derived a version that replaces the assumption that rays are uniformly distributed
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throughout space with the assumption that ray origins are uniformly distributed inside
the scene’s bounding box. Hunt and Mark (2008b) built specialized acceleration struc-
tures for the camera and each light, using a perspective projection to warp space as seen
from the camera or light. This warping led to a new SAH that better accounts for the
fact that the rays aren’t in fact uniformly distributed but that a large number of them
originate from a single point or a set of nearby points (for depth of field and area light
sources, respectively). Hunt (2008) showed how the SAH should be modified when the
“mailboxing” optimization is being used.

Evaluating the SAH can be costly, particularly when many different splits or primitive
partitions are being considered. One solution to this problem is to only compute it at a
subset of the candidate points—for example, along the lines of the bucketing approach
used in the BVHAccel in pbrt. Hurley et al. (2002) suggested this approach for building
kd-trees, and Popov et al. (2006) applied it to kd-trees. Shevtsov et al. (2007) introduced
the improvement of binning the full extents of triangles, not just their centroids.

Hunt et al. (2006) noted that if you only have to evaluate the SAH at one point, for
example, you don’t need to sort the primitives, but only need to do a linear scan over
them to compute primitve counts and bounding boxes on each point. They showed that
approximating the SAH with a piecewise quadratic based on evaluating it at a number
of individual positions and using that to choose a good split leads to effective trees. A
similar approximation was used by Popov et al. (2006).

Other Topics in Acceleration Structures
Weghorst, Hooper, and Greenberg (1984) discussed the trade-offs of using various
shapes for bounding volumes and suggested projecting objects to the screen and using a
z-buffer rendering to accelerate finding intersections for camera rays.

A number of researchers have investigated the applicability of general BSP trees, where
the splitting planes aren’t necessarily axis aligned, as they are with kd-trees. Kammaje
and Mora (2007) built BSP trees using a preselected set of candidate splitting planes,
and Budge et al. (2008) developed a number of improvements to their approach, though
only approached kd-tree performance in practice due to a slower construction stage and
slower traversal than kd-trees. Ize et al. (2008) showed a BSP implementation that renders
scenes faster than modern kd-trees, but at the cost of extremely long construction times.

There are many techniques for traversing a collection of rays through the acceleration
structure together, rather than just one at a time. This approach (“packet tracing”) is
an important component of high-performance ray tracing; it’s discussed in more depth
in Section 18.2. Another major area of recent research has been acceleration structures
that can be incrementally updated over frames of an animation, rather than requiring
reconstruction from scratch. See, for example, Wald et al. (2007) for recent work in this
area.

An innovative approach was suggested by Arvo and Kirk (1987), who introduced a five-
dimensional data structure that subdivided based on both 3D spatial and 2D ray di-
rections. Another interesting approach for scenes described with triangle meshes was
developed by Lagae and Dutré (2008b): they computed a constrained tetrahedralization,
where all triangle faces of the model are represented in the tetrahedralization. Rays are
then stepped through tetrahedra until they intersect a triangle from the scene descrip-
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tion. This approach is still a few times slower than the state-of-the-art in kd-trees and
BVHs but is an interesting new way to think about the problem.

There is an interesting middle-ground between kd-trees and BVHs, where the tree node
holds a splitting plane for each child, rather than just a single splitting plane. For example,
this refinement makes it possible to do object subdivision in a kd-tree-like acceleration
structure, putting each primitive in just one subtree and allowing the subtrees to overlap,
while still preserving many of the benefits of efficient kd-tree traversal. Ooi et al. (1987)
first introduced this refinement to kd-trees for storing spatial data, naming it the “spatial
kd-tree” (skd-tree). Skd-trees have recently been applied to ray tracing by a number of
researchers, including Zachmann (2002), Woop et al. (2006), Wächter and Keller (2006),
Havran et al. (2006), and Zuniga and Uhlmann (2006).

When spatial subdivision is used, primitives may overlap multiple nodes of the structure
and a ray may be tested for intersection with the same primitive multiple times as it passes
through the structure. Arnaldi, Priol, and Bouatouch (1987) and Amanatides and Woo
(1987) developed the “mailboxing” technique to address this issue: each ray is given a
unique integer identifier and each primitive records the id of the last ray that was tested
against it. If the ids match, then the intersection test is unnecessary and can be skipped.

EXERCISES

4.1 What kind of scenes are worst-case scenarios for the three acceleration struc-
tures in pbrt? (Consider specific geometric configurations that the approaches
will respectively be unable to handle well.) Construct scenes with these char-
acteristics, and measure the performance of pbrt as you add more primitives.
How does the worst case for one behave when rendered with the others?

4.2 Read the paper by Ize et al. (2007) and apply their methods for selecting grid
resolution to the GridAccel in this chapter. Measure the trade-offs related to
time spent building the grid, memory used to represent the grid, and time
needed to find ray–object intersections for different grid resolutions.

4.3 Generalize the grid implementation in this chapter to be hierarchical: refine
voxels that have an excessive number of primitives overlapping them to instead
hold a finer subgrid to store its geometry. (See, for example, Jevans and Wyvill
(1989) for one approach to this problem and Ize et al. (2007) for effective
methods for deciding when refinement is worthwhile.)

4.4 Implement the compact grid representation introduced by Lagae and Dutré
(2008a). How does the performance of your implementation compare to the
GridAccel in pbrt? (Measure construction time, memory use, and time to find
ray intersections.)

4.5 Implement smarter overlap tests for building accelerators. Using objects’
bounding boxes to determine which grid cells and which sides of a kd-tree split
they overlap can hurt performance by causing unnecessary intersection tests.
(Recall Figure 4.5.) Add a bool Shape::Overlaps(const BBox &) const method
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to the shape interface that takes a world space bounding box and determines if
the shape truly overlaps the given bound.

A default implementation could get the world bound from the shape and use
that for the test, and specialized versions could be written for frequently used
shapes. Implement this method for Spheres and Triangles and modify the ac-
celerators to call it. You may find it helpful to read Akenine-Möller’s paper on
fast triangle-box overlap testing (Akenine-Möller 2001). Measure the change
in pbrt’s overall performance due to this change, separately accounting for in-
creased time spent building the acceleration structure and reduction in ray–
object intersection time due to fewer intersections. For a variety of scenes,
determine how many fewer intersection tests are performed thanks to this im-
provement.

4.6 Implement “split clipping” in pbrt’s BVH implementation. Read the papers
by both Ernst and Greiner (2007) and Dammertz and Keller (2008) and im-
plement one of their approaches to subdivide primitives with large bounding
boxes relative to their surface area into multiple subprimitives for tree construc-
tion. (Doing so will probably require modification to the Shape interface; you
will probably want to design a new interface that allows some shapes to indicate
that they are unable to subdivide themselves, so that you only need to imple-
ment this method for triangles, for example.) Measure the improvement for
rendering actual scenes; a compelling way to gather this data is to do the ex-
periment that Dammertz and Keller did, where a scene is rotated around an
axis over progressive frames of an animation. Typically, many triangles that are
originally axis aligned will have very loose bounding boxes as they rotate more,
leading to a substantial performance degradation if split clipping isn’t used.

4.7 Fix either the BVHAccel or the KdTreeAccel so that it doesn’t always immediately
refine all primitives before building the tree but instead builds subtrees on
demand. Care must be taken when updating the data structures in the presence
of multi-threading so that other threads don’t see the tree in an inconsistent
state as it is being updated. One option is to use a reader-writer mutex, as
the GridAccel does, though the cost of acquiring the mutex for each ray is
significant. More efficient is to use a lock-free approach for updating the data
structure, as described in Section A.9.2.

4.8 On systems with 64-bit pointers, the KdAccelNode structure will actually be
12 bytes large, thanks to an 8-byte pointer for the KdAccelNode::primitives
array. Modify the implementation to fix this problem. One approach would be
to allocate all of the memory for all of the primitives arrays contiguously—
for example, with a vector stored in the KdTreeAccel. Then, nodes of the tree
that had multiple primitives would store an offset into this vector where their
primitive numbers started, rather than a pointer. How much does this change
affect performance in practice for reasonably complex scenes that use a kd-tree
accelerator?

4.9 Investigate alternative SAH cost functions for building BVHs or kd-trees. How
much can a poor cost function hurt its performance? How much improvement
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can be had compared to the current one? (See the discussion in the “Further
Reading” section for ideas about how the SAH may be improved.)

4.10 Construction time for the BVHAccel and particularly the KdTreeAccel can be
a meaningful portion of overall rendering time, yet the implementations in
this chapter do not parallelize building the acceleration structures. Investigate
techniques for parallel construction of accelerators such as described by Wald
(2007) and Shevtsov et al. (2007) and implement one of them in pbrt. How
much of a speedup do you achieve in accelerator construction? How does the
speedup scale with additional processors? Measure how much of a speedup
your changes translate to for overall rendering. For what types of scenes does
your implementation have the greatest impact?

4.11 The idea of using spatial data structures for ray intersection acceleration can be
generalized to include spatial data structures that themselves hold other spatial
data structures, rather than just primitives. Not only could we have a grid
that has subgrids inside the grid cells that have many primitives in them (thus
partially solving the adaptive refinement problem), but we could also have the
scene organized into a hierarchical bounding volume where the leaf nodes are
grids that hold smaller collections of spatially nearby primitives. Such hybrid
techniques can bring the best of a variety of spatial data structure-based ray
intersection acceleration methods. In pbrt, because both geometric primitives
and intersection accelerators inherit from the Primitive base class and thus
provide the same interface, it’s easy to mix and match in this way.

Modify pbrt to build hybrid acceleration structures—for example, using a BVH
to coarsely sort the scene geometry and then uniform grids at the leaves of the
tree to manage dense, spatially local collections of geometry. Measure the run-
ning time and memory use for rendering schemes with this method compared
to the current accelerators.

4.12 Eisemann et al. (2007) described an even more efficient ray–box intersection
test than is used in the BVHAccel. It does more computation at the start for
each ray, but makes up for this work with fewer computations to do tests for
individual bounding boxes. Implement their method in pbrt and measure the
change in rendering time for a variety of scenes. Are there simple scenes where
the additional upfront work doesn’t pay off? How does the improvement for
highly complex scenes compare to the improvement for simpler scenes?

4.13 It is often possible to introduce some approximation into the computation of
shadows from very complex geometry (consider, for example, the branches and
leaves of a tree casting a shadow). Lacewell et al. (2008) suggested augmenting
the acceleration structure with a prefiltered directionally varying representation
of occlusion for regions of space. As shadow rays pass through these regions, an
approximate visibility probability can be returned rather than a binary result,
and the cost of tree traversal and object intersection tests is reduced. Implement
this approach in pbrt and measure its performance.

4.14 The automated testing code in AggregateTest can be an effective way to find test
cases that show a scene and a particular ray that exhibit a bug. For very complex
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scenes, however, debugging these failures can be tedious; if a simpler scene
could be found that exhibited the same bug, programmer time can be saved.
Investigate automated techniques for finding minimal reproduction cases for
bugs. For example, Zeller and Hildebrandt (2002) describe an algorithm that
automatically tries to maximally simplify failure-inducing input; their method
could be applied to try to remove primitives from the scene description and
find a simpler scene that still had an error.

4.15 In addition to using existing scenes to test accelerators, randomly generated
scenes can also be effective at finding bugs. In general, the search space for
accelerator bugs is enormous, though the number of available processing cycles
is also large. (Running random tests on accelerators in the background for
weeks or months can be worthwhile in that bugs found in this manner are
easier to track down than running into them when rendering a scene and seeing
an unexpected image artifact.) Implement code that randomly generates scenes
for testing. Effective approaches include building scenes from existing models,
randomly transforming them to place them, perturbing existing models (for
example, changing some vertex positions of a triangle mesh), or generating
completely random scenes (for example, a random number of triangles, each
with random vertex positions). Can you find bugs in pbrt’s accelerators with
this technique?

4.16 Modify the system to record all rays that were traced while rendering a scene
to a file and then use rays gathered in this way to test the aggregates. Modify
the AggregateTest to read files of these rays and use them for its tests. The
easiest way to collect rays is probably to modify the Scene::Intersect() and
IntersectP() methods to save them. Be careful to use either the %a formatting
string described in Section 4.6.1 for accurately writing floating-point values to
a file, or write the raw bits of the float, for example, using fwrite(). Also be
aware of the implications of multi-threading: if multiple threads write to the
same file, their output can be interleaved. Either use a mutex to protect access
to the file, or be sure to store all of the values for a ray with a single fprintf()
or fwrite() call, rather than using multiple calls to write all of the components.
(Implementations of the C standard library do guarantee atomicity from single
calls to those functions, using a mutex internally.) Try to fix any bugs you find
in aggregates.


