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Although the third edition of Physically Based Renderingincludes an implemen-
tation of a shape that allows for e�cient intersections of ray s with a \
at ribbon"
primitive that can be used for modeling �ne hair and fur, the system doesn't in-
clude any BSDFs or BSSRDFs that model light scattering from hair. (This state
of a�airs was due to both time and space limits.)

Therefore, here we will describe the implementation of the hair scattering model
described in the paper A Practical and Controllable Hair and Fur Model for
Production Path Tracing , by Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck
Tappan, and Brent Burley. The paper itself is available here: benedikt-bitterli.me/
pchfm/ . See the \Further Reading" section at the end of this document for more
information about previous work in scattering from hair (some of which is also
incorporated in our implementation here.) Figure 1.1 shows a model of curly hair
rendered using this BSDF.

This implementation includes both a newBxDFand a newMaterial for hair. Both
of these are de�ned in the �les materials/hair.h and materials/hair.cpp , which
are now included in the \master" branch of pbrt . A few unit tests are in the �le
tests/hair.cpp . Note that this is a di�erent organization than the rest of pbrt ,
whereBxDFs are generally de�ned incore/reflection.{h,cpp} . For this extension,
we wanted to localize the additions to all-new �les as much aspossible in order
to minimize changes to preexisting parts of the system.



Figure 1.1: Curly hair model represented by nearly 3.3 millionCurve shapes, rendered using the scattering
model described in this document. Path tracing was used to accurately model the e�ect of multiple
scattering; Figure 1.2 shows the di�erence global illumination makes in hair. For this image, 1024 samples
per pixel were used.(Hair geometry courtesy Cem Yuksel.)

1.1 GEOMETRY

Before discussing radiometry and light scattering from hair, we'll start by de�ning
some ways of measuring incident and outgoing directions from intersection points
on hair.

We will assume that the hair BSDF is only used with the Curve shape that was
de�ned in Section 3.7. in the third edition of Physically Based Rendering.1 A Curve
can represent the shape de�ned by circle swept along the pathof a B�ezier curve,
giving a generalized cylinder, and provides a reasonably e�cient intersection test
for this primitive. For the geometric discussion to follow, we'll assume that the
Curve variant corresponding to a 
at ribbon that is always facing t he incident ray
is being used. However, in the BSDF model, we'll interpret intersection points as
if they were on the surface of the swept cylinder. If there is no interpenetration

1 All page and section references in the remainder of this document will refer to the third edition.



SECTION 1.1 G E O M E T R Y 3

Figure 1.2: The Importance of Multiple Scattering. When the hair model in Figure 1.1 is rendered
with direct lighting only, the apparent di�erence is substantial.Especially for light-colored hair, multiple
scattering makes a signi�cant contribution to hair's appearance.(Hair geometry courtesy Cem Yuksel.)

between hairs and if the hair's width is not much larger than a pixel's width,
there's no harm in switching between these interpretations.

Throughout our implementation of this scattering model, we will regularly �nd
it useful to separately consider scattering in the longitudinal plane, e�ectively
using a side view of the curve, and scattering the azimuthal plane, considering
it head-on at a particular point along it. To understand these parameterizations,
�rst recall that Curves are parameterized such that theu direction is along the
length of the curve andv spans its width. At a given u, all of the possible surface
normals of the curve are given by the surface normals of the circular cross-section
at that point. All of these normals lie in a plane; we will call t his the normal plane
(Figure 1.3).

We'll �nd it useful to represent directions at a ray{curve in tersection point
with respect to coordinates (�; � ) that are de�ned with respect to the normal
plane at the u position where the ray intersected the curve. The angle� is the
longitudinal angle, which is the o�set of the ray with respect to the normal plane
(Figure 1.4(a)); � ranges from� �= 2 to �= 2, where�= 2 corresponds to a direction
aligned with @p=@uand � �= 2 corresponds to� @p=@u. As explained at the start
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Figure 1.3: At any parametric pointu along aCurve shape, the cross-section of the curve is de�ned by
a circle. All of the circle's surface normals atu (arrows) lie in a plane (dashed lines), dubbed the \normal
plane".

Figure 1.4: (a) Given a direction! at a point on a curve, the angle� is de�ned by the angle between
! and the normal plane at the point (thick line). The curve's tangentvector at the point is aligned with
the x axis in the BSDF coordinate system. (b) For a direction! , the angle� is found by projecting the
direction into the normal plane and computing its angle with they axis, which corresponds to the curve's
@p=@vin the BSDF coordinate system.

of Chapter 8, in pbrt 's regular BSDF coordinate system,@p=@uis aligned with the
+ x axis, so given a direction in the BSDF coordinate system, we have sin� = ! x,
since the normal plane is perpendicular to@p=@u.

In the BSDF coordinate system, the normal plane is spanned by the y and z
coordinate axes. (y corresponds to@p=@vfor curves, which is always perpendicu-
lar to the cure's @p=@u, and z is aligned with the ribbon normal.) The azimuthal
angle � is found by projecting a direction ! into the normal plane and computing
its angle with the y axis. It thus ranges from 0 to 2� . (See Figure 1.4(b).)

One more measurement with respect to the curve will be useful in the following.
Consider incident rays with some direction! : at any given parametric u value, all
such rays that intersect the curve can only possibly intersect one half of the circle
swept along the curve (Figure 1.5). We will parameterize the circle's diameter
with the variable h, where h = � 1 corresponds to the ray grazing the edge of the
circle, and h = 0 corresponds to hitting it edge-on. Becausepbrt parameterizes
curves with v across the curve andv 2 [0; 1], we can computeh = � 1 + 2v.
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Figure 1.5: Given an incident direction! of a ray that intersected aCurve projected to the normal
plane, we can parameterize the curve's width withh 2 [� 1; 1]. Given theh for a ray that has intersected
the curve, trigonometry shows how to compute the angle
 between! and the surface normal on the
curve's surface at the intersection point. The two angles
 are equal, and because the circle's radius is 1,
sin 
 = h.

Given the h for a ray intersection, we can compute the angle between the surface
normal (which is by de�nition in the normal plane) and the direc tion ! , which
we'll denote by 
 . (Note: this is unrelated to the 
 n notation used for 
oating-
point error bounds in Section 3.9). See Figure 1.5, which shows that sin 
 = h.

1.2 UTILITY ROUTINES

Before going forward to the hair scattering model implementation, we'll intro-
duce a few utility functions that will be repeatedly useful in the following. (In
retrospect, these would have been nice to have included inpbrt-v3 ; they will
likely be part of the core system in a future version.)

First, Sqr() just computes the square of the given value. Although this function
provides trivial functionality, it makes it possible to tran scribe equations to code
more succinctly than if we did not have this helper.

hGeneral Utility Functions i �
inline Float Sqr(Float v) { return v * v; }

In the following, we will also need to compute relatively large integer powers of

oating-point values. Because the integer powers will be compile-time constants,
it's possible to use C++ templates to generate much more e�cient code to
compute these powers than is generally possible using standard library routines.

Consider for example the task of computing the valuev20. This computation is
equivalently expressed as
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((( v2)2)2)2(v2)2:

Counting up multiplications, we can see that given v, just �ve multiplies are
necessary to compute this value (assuming that the value (v2)2 is computed once
and reused). More generally, raising a value to an integer power n can be done
with O(log n) multiplies.

An obvious (and indeed correct) approach to computev20 would be to call
std::pow(v, 20) . Doing so is likely to be much less e�cient than �ve multiplies ;
in general, std::pow() is implemented by computing a logarithm, multiplying by
the exponent, and then exponentiating. Evaluating these transcendental functions
generally requires tens or hundreds of machine instructions, taking much longer
than a handful of multiplies. Some std::pow() implementations check for small
integer exponents and handle them specially, and some compilers detect calls like
std::pow(v, 2) and directly turn them into multiplies, but neither of these can
be depended on.

C++ template functions o�er a way to turn exponentiation like this into an
e�cient series of multiplies. Consider this use of templates:

template <int n> Float Pow(Float v) { return v * Pow<n-1>(v); }

template <> Float Pow<0>(Float v) { return 1; }

A call like Pow<5>(v) will be turned into v*v*v*v*v , which can be directly compiled
into a series of multiplies. There's a catch, however: recall from Section 3.9 of the
third edition that the IEEE 
oating-point standard prohibi ts the compiler from
reassociating 
oating-point expressions. Thus, a callPow<20>(v) will be compiled
to nineteen multiply operations|likely more e�cient than std::pow() , but not
yet the logarithmic number that's possible assuming we don't mind reassociation.

The following template functions give us a logarithmic numberof multiplication
operations. The mainPow() function splits the exponent in half before recursively
calling itself; template specializations handle the base cases.

hGeneral Utility Functions i �
template <int n>

static Float Pow(Float v) {

static_assert(n > 0, "Power can't be negative");

Float n2 = Pow<n / 2>(v);

return n2 * n2 * Pow<n & 1>(v);

}

template <> Float Pow<1>(Float v) { return v; }

template <> Float Pow<0>(Float v) { return 1; }

In benchmarks on a 2016-era laptop, this implementation was 4.6x faster than
calling std::pow for its uses later in this code.

Though our implementation of Pow() is straightforward, it's always a good idea
to have a unit test. pbrt uses the Google Test framework for unit tests; see the
pbrt-v3 User's Guide for more information. Here, we test integer powers up to 29.
The value 2 for v is chosen carefully; recall from the discussion on p. 214 of the
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third edition that with IEEE 
oating-point arithmetic, mult iplication by a factor
of two gives an exact result as long as there's no under
ow or over
ow. Thus,
we can reasonably expect exact equality with the integer power of two reference
values computed for the test.

hHair Tests i �
TEST(Hair, Pow) {

EXPECT_EQ(Pow<0>(2.f), 1 << 0);

EXPECT_EQ(Pow<1>(2.f), 1 << 1);

EXPECT_EQ(Pow<2>(2.f), 1 << 2);

hTest remainder of pow template powers to 29i
}

In the following, we'll need to compute the arcsine of variousvalues. These values
may be slightly outside the legal range [� 1; 1] due to 
oating-point round-o�
error; the SafeASin() utility function handles clamping to this range, which makes
calling code a bit cleaner. A runtime assertion makes sure thatthe value provided
isn't too far out of the valid range.

hGeneral Utility Functions i �
inline Float SafeASin(Float x) {

CHECK(x >= -1.0001 && x <= 1.0001);

return std::asin(Clamp(x, -1, 1));

}

Similarly, we need to compute the square root of values that may be slightly
negative due to round-o� error; again, the clamp to the valid range is nice to
have in a single place.

hGeneral Utility Functions i �
inline Float SafeSqrt(Float x) {

CHECK_GE(x, -1e-4);

return std::sqrt(std::max(Float(0), x));

}

1.3 SCATTERING FROM HAIR

Geometric setting and utility functions in hand, we will now t urn to discuss the
general scattering behaviors that give hair its distinctive appearance and some
of the assumptions that we'll make in the following.

Hair and fur have three main components:

� Cuticle: the outer layer, which forms the boundary with air. T he cuticle's
surface is a nested series of scales at a slight angle to the hair surface.

� Cortex: the next layer inside the cuticle. The cortex generally accounts for
around 90% of hair's volume but less for fur. It is typically colored with
pigments that mostly absorb light.

� Medulla: the center core at the middle of the cortex. It is larger and more
signi�cant in thicker hair and fur. The medulla is also pigment ed. Scattering
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Figure 1.6: The surface of hair is formed by scales that deviate a by a small angle � from the ideal
cylinder. (� is generally around2 � 4� ; the angle shown here is larger for illustrative purposes.)

from the medulla is much more signi�cant than scattering from the medium
in the cortex.

For the following model, we'll make a few assumptions. (Approaches for relaxing
some of them are discussed in the exercises at the end of this document.) First,
we assume that the cuticle can be modeled as a rough dielectric cylinder with
scales that are all angled at the same angle� (e�ectively giving a nested series
of cones.) (Figure 1.6.) We also treat the hair interior as a homogeneous medium
that only absorbs light|scattering inside the hair is not mod eled directly.

We will also make the assumption that scattering can be modeled accurately by
a BSDF|we model light as entering and exiting the hair at the sa me place. (A
BSSRDF could certainly be used instead; it's unclear how important subsurface
light transport is in practice.) Note that this assumption do es require that the
hair's diameter be fairly small with respect to how quickly ill umination changes
over the surface; this assumption is generally �ne in practice.

Incident light arriving at a hair may be scattered one more more times before
leaving the hair; Figure 1.7 shows a few of the possible cases. We usep to denote
the number of path segments it follows inside the hair before being scattered
back out to air. We will sometimes refer to terms with a shorthand that describes
the corresponding scattering events at the boundary:p = 0 corresponds to R, for
re
ection, p = 1 is TT, for two transmissions p = 2 is TRT, p = 3 is TRRT, and
so forth.

In the following, we will �nd it useful to consider these scattering modes sepa-
rately and so will write the hair BSDF as a sum over termsp:

f (! o; ! i) =
1X

p=0

f p(! o; ! i): (1 .1)

To make the scattering model implementation and importance sampling easier,
many hair scattering models factor f into terms where one depends only on the
angles� and another on � , the di�erence between � o and � i. This semi-separable
model is given by:

f p(! o; ! i) =
M p(� o; � i) Ap(! o) Np(� )

jcos� i j
; (1 .2)
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Figure 1.7: Incident light arriving at a hair can be scattered in a variety of ways. p = 0 corresponds to
light re
ected from the surface of the cuticle. Light may also be transmitted through the hair and leave
the other side:p = 1 . It may be transmitted into the hair and re
ected back into it again before being
transmitted back out:p = 2 , and so forth.

where we have alongitudinal scattering function M p, an attenuation function Ap,
and an azimuthal scattering function Np.2 The division by jcos� i j cancels out the
corresponding factor in the re
ection equation.

In the following implementation, we will evaluate the �rst few terms of the sum
in Equation (1.1) and then represent all higher-order terms with a single one.
The pMaxconstant controls how many are evaluated before the switch-over.

hHairBSDF Constantsi �
static const int pMax = 3;

The model implemented in the HairBSDFis parameterized by six values:

� h: the [� 1; 1] o�set along the curve width where the ray intersected the
oriented ribbon (h was de�ned in Section 1.1).

� eta : the index of refraction of the interior of the hair. (Typica lly, 1.55).
� sigma_a: the absorption coe�cient of the hair interior, where distan ce is

measured with respect to the hair cylinder's diameter.
� beta_m: the longitudinal roughness of the hair, mapped to the range [0; 1].
� beta_n: the azimuthal roughness, also mapped to [0; 1].
� alpha : the angle that the small scales on the surface of hair are o�set from

the base cylinder, expressed in degrees. (Typically, 2).

2 Other authors generally includeAp in the Np term, though we �nd it more clear to keep them separate for thefollowing exposition. Here we

also usef for the BSDF, which most hair scattering papers denote byS.
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hHairBSDF Method De�nitions i �
HairBSDF::HairBSDF(Float h, Float eta, const Spectrum &si gma_a, Float beta_m,

Float beta_n, Float alpha)

: BxDF(BxDFType(BSDF_GLOSSY | BSDF_REFLECTION | BSDF_TRANSMISSION)),

h(h), gammaO(SafeASin(h)), eta(eta), sigma_a(sigma_a), beta_m(beta_m),

beta_n(beta_n), alpha(alpha) {

hCompute longitudinal variance from � mi
hCompute azimuthal logistic scale factor from� ni
hCompute � terms for hair scalesi

}

hHairBSDF Private Data i �
const Float h, gammaO, eta;

const Spectrum sigma_a;

const Float beta_m, beta_n, alpha;

We'll proceed to the method that evaluates the BSDF, leaving implementation
of the code fragments in the constructor for later, closer to where the values they
compute are used.

hHairBSDF Method De�nitions i �
Spectrum HairBSDF::f(const Vector3f &wo, const Vector3f & wi) const {

hCompute hair coordinate system terms related towoi
hCompute hair coordinate system terms related towi i
hCompute cos � t for refracted ray i
hCompute 
 t for refracted ray i
hCompute the transmittanceT of a single path through the cylinderi
hEvaluate hair BSDFi

}

There are a few quantities related to the directions! o and ! i that are needed
for evaluating the hair scattering model|speci�cally, the s ine and cosine of the
angle � that each direction makes with the plane perpendicular to thecurve, and
the angle � in the azimuthal coordinate system.

As explained in Section 1.1, sin� o is given by the x component of ! o in
the BSDF coordinate system. Given sin� o, because� o 2 [� �= 2; �= 2], we know
that cos � o must be positive, and so we can compute cos� o using the identity
sin2 � + cos2 � = 1. The angle � o in the perpendicular plane can be computed
with std::atan .

hCompute hair coordinate system terms related towoi �
Float sinThetaO = wo.x;

Float cosThetaO = SafeSqrt(1 - Sqr(sinThetaO));

Float phiO = std::atan2(wo.z, wo.y);

Equivalent code, not included here, computes these values for wi .
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1.3.1 LONGITUDINAL SCATTERING

Onward to M p, the function that de�nes the component of scattering related to
the angles � |longitudinal scattering. Longitudinal scattering is res ponsible for
the specular lobe along the length of hair and the longitudinal roughness� m
controls the size of this highlight. Figure 1.8 shows a hair model rendered with
three di�erent longitudinal scattering roughnesses.

The model implemented here was developed from d'Eon et al. (2011). The
mathematical details of the derivation are complex, so we won'tinclude them
here. The goals (which they achieved) were to derive a scattering function that
is normalized (ensuring both energy conservation and no energy loss) and can be
sampled directly. Although the model isn't derived based on a physical model of
how hair scatters light, it matches measured data well and has parametric control
of roughnessv.

Their model is:

M p(� o; � i) =
1

2v sinh(1=v)
e�

sin � i sin � o
v I 0

�
cos� o cos� i

v

�
; (1 .3)

where I 0 is the modi�ed Bessel function of the �rst kind and v is the roughness
variance. (Note that this is a di�erent usage of v than earlier in this document
when it was used for the parametric coordinate along the widthof a curve.)
Figure 1.9 shows plots ofM p.

It turns out that that this model isn't numerically stable for l ow roughness
variance values, so d'Eon (2013) derived a di�erent approach for that case that
operates on the log ofI 0 before taking an exponent at the end. Thev <= .1 test
in the implementation below selects between the two formulations.

hHair Local Functions i �
static Float Mp(Float cosThetaI, Float cosThetaO, Float si nThetaI,

Float sinThetaO, Float v) {

Float a = cosThetaI * cosThetaO / v;

Float b = sinThetaI * sinThetaO / v;

Float mp = (v <= .1) ?

(std::exp(LogI0(a) - b - 1/v + 0.6931f + std::log(1 / (2*v))) ) :

(std::exp(-b) * I0(a)) / (std::sinh(1 / v) * 2 * v);

return mp;

}

I0() and LogI0() compute the values of the modi�ed Bessel function of the �rst
kind its logarithm, respectively. We won't include their impl ementations here,
which are based on numerical approximations to those transcendental functions.

hHair Local Declarations i �
inline Float I0(Float x), LogI0(Float x);

One challenge with this model is choosing a roughnessv to achieve a desired
look. Here we have implemented a perceptually uniform mapping from roughness
� m 2 [0; 1] to v where a roughness of 0 is nearly perfectly smooth and 1 is
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Figure 1.8: The E�ect of Varying the Longitudinal Roughness � m. Hair model illuminated by a
skylight environment map rendered with varying longitudinal roughness. (a) With a very low roughness,
� m = 0 :1, the hair appears too shiny|almost metallic. (b) With� m = 0 :25, the highlight is similar to
typical human hair. (c) At high roughness,� m = 0 :6, the hair is unrealistically 
at and di�use.(Hair
geometry courtesy Cem Yuksel.)
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Figure 1.9: Plots of the Longitudinal Scattering Function. The shape ofM p as a function of� i for �xed � o (� 1 radian,� 1:3 radians,
and � 1:4 radians, from left to right). In all cases a roughness variance ofv = 0 :02 was used. Note that for grazing angles, the peak is
slightly shifted from the perfect specular re
ection direction (at 1,1:3, and 1:4, respectively.) Note also that they axis scales are all
di�erent, re
ecting the functions being normalized.(After d'Eon et al. (2011), Figure 4.)

extremely rough. Di�erent roughness values are used for di�erent values ofp. For
p = 1, roughness is reduced by an empirical factor that models thefocusing of light
due to refraction through the circular boundary of the hair. It is then increased
for p = 2 and subsequent terms, which models the e�ect of light spreading out
after multiple re
ections at the rough cylinder boundary in interior of the hair.
(See the \Further Reading" section for more on this variation.)

hCompute longitudinal variance from � mi �
v[0] = Sqr(0.726f * beta_m + 0.812f * Sqr(beta_m) +

3.7f * Pow<20>(beta_m));

v[1] = .25 * v[0];

v[2] = 4 * v[0];

for (int p = 3; p <= pMax; ++p)

v[p] = v[2];

hHairBSDF Private Data i �
Float v[pMax + 1];

1.3.2 ABSORPTION IN FIBERS

The Ap term describes how much of the incident light is a�ected by each of the
scattering modesp. It incorporates two e�ects: Fresnel re
ection and transmission
at the hair{air boundary and absorption of light that passes through the hair
(for p > 0). This absorption is what gives hair and fur its color. Figure 1.10 has
rendered images of hair with varying absorption coe�cients, showing the e�ect
that absorption has. The Ap function that we will implement here models all
re
ection and transmission at the hair boundary as perfectly specular|a very
di�erent assumption that M p (and Np to come), which model glossy re
ection and
transmission. This assumption simpli�es the implementation andgives reasonable
results in practice (presumably in that the specular paths are in a sense averages
over all of the possibly glossy paths.)

We'll start by �nding the transmittance of a single transmitte d segment through
the hair. To do so, we need to �nd the distance the ray travels until it exits the
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Figure 1.10: Hair Rendered with Various Absorption Coe�cients. In all cases,� m = 0 :125
and � n = 0 :3. (a) � a = (3 :35; 5:58; 10:96) (RGB coe�cients): in black hair, almost all transmitted
light is absorbed. The white specular highlight from thep = 0 term is the main visual feature. (b)
� a = (0 :84; 1:39; 2:74), giving brown hair, where thep > 1 terms all introduce color to the hair. (c)
With a very low absorption coe�cient of� a = (0 :06; 0:10; 0:20), we have blonde hair.(Hair geometry
courtesy Cem Yuksel.)
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cylinder; the easiest way to do this is to compute the distances in the longitudinal
and azimuthal projections separately.

To compute these distances, we need the transmitted angles of the ray ! o, in the
longitudinal and azimuthal planes, which we'll denote by � t and 
 t , respectively.
Application of Snell's law using the hair's index of refraction � allows us to
compute sin� t and cos� t .

hCompute cos� t for refracted ray i �
Float sinThetaT = sinThetaO / eta;

Float cosThetaT = SafeSqrt(1 - Sqr(sinThetaT));

For 
 t , although we could compute the transmitted direction ! t from ! o and
then project ! t into the normal plane, it's possible to compute
 t directly using a
modi�ed index of refraction that accounts for the e�ect of the longitudinal angle
on the refracted direction in the normal plane. The modi�ed index of refraction
is given by

� 0=

p
� 2 � sin2 � o

cos� o
:

Given � 0, we can compute the refracted direction
 t directly in the normal plane.3

Sinceh = sin 
 o, we can apply Snell's law (p. 546) to compute
 t .

hCompute 
 t for refracted ray i �
Float etap = std::sqrt(eta * eta - Sqr(sinThetaO)) / cosThet aO;

Float sinGammaT = h / etap;

Float cosGammaT = SafeSqrt(1 - Sqr(sinGammaT));

Float gammaT = SafeASin(sinGammaT);

If we consider the azimuthal projection of the transmitted ray in the normal plane,
we can see that the segment makes the same angle
 t with the circle normal at
both of its endpoints (Figure 1.11). If we denote the total length of the segment
by la, then basic trigonometry tells us that la=2 = cos 
 t , assuming a unit radius
circle.

Now considering the longitudinal projection, we can see that the distance that a
transmitted ray travels before exiting is scaled by a factor of 1=cos� t as it passes
through the cylinder (Figure 1.12). Putting these together, the total segment
length in terms of the hair diameter is

l =
2 cos
 t

cos� t
:

Recall that for the HairBSDF we de�ned � a to be measured with respect to the
hair diameter (so that adjusting the hair geometry's width doesn't completely
change its color). Therefore, we do not consider the hair cylinder diameter when

3 This is due to theBravais properties of cylindrical scattering. See Appendix B of Marschner et al. (2003) for a nice derivation and further

explanation.
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Figure 1.11: Computing the Transmitted Segment's Distance. For a transmitted ray with angle
 t
with respect to the circle's surface normal, half of the total distance la is given bycos
 , assuming a unit
radius. Because
 t is the same at both halves of the segment,la = 2 cos 
 t .

Figure 1.12: The E�ect of � t on the Transmitted Segment's Length. The length of the transmitted
segment through the cylinder is increased by a factor of1=cos� t versus a direct vertical path.

we apply Beer's law, and transmittance is given by

T = e � � al : (1 .4)

hCompute the transmittanceT of a single path through the cylinderi �
Spectrum T = Exp(-sigma_a * (2 * cosGammaT / cosThetaT));

Given a single segment's transmittance, we can now describe the function that
evaluates the full Ap function. Ap() returns an array with the values of Ap up to
pmax and a �nal value that accounts for the sums of attenuations for all of the
higher-order scattering terms.
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hHair Local Functions i �
static std::array<Spectrum, pMax + 1> Ap(Float cosThetaO, Float eta,

Float h, const Spectrum &T) {

std::array<Spectrum, pMax + 1> ap;

hCompute p = 0 attenuation at initial cylinder intersection i
hCompute p = 1 attenuation termi
hCompute attenuation terms up top = pMaxi
hCompute attenuation term accounting for remaining orders of scatteringi
return ap;

}

For the A0 term, corresponding to light that re
ects at the cuticle, the Fresnel
re
ectance at the air{hair boundary gives the fraction of li ght that is re
ected.
We can �nd the cosine of the angle between the surface normal and the direction
vector with angles � o and 
 o in the hair coordinate system by cos� o cos
 o.

hCompute p = 0 attenuation at initial cylinder intersection i �
Float cosGammaO = SafeSqrt(1 - h * h);

Float cosTheta = cosThetaO * cosGammaO;

Float f = FrDielectric(cosTheta, 1.f, eta);

ap[0] = f;

For the TT term, p = 1, we have two 1� f terms, accounting for transmission
into and out of the cuticle boundary, and a single T term for one transmission
path through the hair. For all of the p > 0 terms, which include transmission,
we can neglect the scaling of radiance based on the di�erent indices of refraction
of the exterior and interior media (recall the discussion of this e�ect on p. 527):
because the viewer and light source are both assumed to be outside the hair, all
of those factors cancel out.

hCompute p = 1 attenuation termi �
ap[1] = Sqr(1 - f) * T;

The p = 2 term has one more re
ection event, re
ecting light back int o the hair,
and then a second transmission term. Since we assume perfect specular re
ection
at the cuticle boundary, both segments inside the hair make thesame angle
 t
with the circle's normal (Figure 1.13). From this, we can see that both segments
must have the same length (and so forth for subsequent segments.) In general,
for p > 0,

Ap = (1 � f )2Tpf p� 1:

hCompute attenuation terms up top = pMaxi �
for (int p = 2; p < pMax; ++p)

ap[p] = ap[p - 1] * T * f;

After pMax, a �nal term accounts for all further orders of scattering. We'd like to
compute the sum of the in�nite series of remaining terms, which fortunately can
be found in closed form, since bothT < 1 and f < 1:
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Figure 1.13: When a transmitted ray undergoes specular re
ection at the interior of the hair cylinder,
it makes the same angle
 t with the circle's surface normal as the original transmitted ray did. From this,
it follows that the lengths of all ray segments for a path inside the cylinder must be equal.

1X

p= pmax

(1 � f )2Tpf p� 1 =
(1 � f )2Tpmaxf pmax� 1

1 � T f
:

hCompute attenuation term accounting for remaining orders of scattering i �
ap[pMax] = ap[pMax - 1] * f * T / (Spectrum(1.f) - T * f);

1.3.3 AZIMUTHAL SCATTERING

Finally, we will model the component of scattering dependent on the angle � . We
will do this work entirely in the normal plane. The azimuthal s cattering model
is based on �rst computing a new azimuthal direction assuming perfect specular
re
ection and transmission and then de�ning a distribution o f directions around
this central direction, where increasing roughness gives awider distribution.
Therefore, we will �rst consider how an incident ray is de
ected by specular
re
ection and transmission in the normal plane; Figure 1.14 illustrates the cases
for the �rst two values of p.

Following the reasoning from Figure 1.14, we can derive the function �, which
gives the net change in azimuthal direction:

�( p; h) = 2 p
 t � 2
 o + p�:

(Recall that 
 o and 
 t are derived from h.) Figure 1.15 shows a plot of this
function for p = 1.
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Figure 1.14: For specular re
ection, withp = 0 , the incident and re
ected directions make the same
angle
 o, with the surface normal. The net change in angle is thus� 2
 o. For p = 1 , the ray is de
ected
from 
 o to 
 t when it enters the cylinder and then correspondingly on the way out. Wecan also see that
when the ray is transmitted again out of the circle, it again makes anangle 
 o with the surface normal
there. Adding up the angles, the net de
ection is2
 t � 2
 o + � .

hHair Local Functions i �
inline Float Phi(int p, Float gammaO, Float gammaT) {

return 2 * p * gammaT - 2 * gammaO + p * Pi;

}

Now that we know how to compute new angles in the normal plane after specular
transmission and re
ection, we need a way to represent surface roughness, so
that a range of directions centered around the specular direction can contribute
to scattering. The logistic distribution provides a good option: it is a generally
useful one for rendering, since it has a similar shape to the Gaussian (which of
course comes up often in rendering), while also being normalized and integrable
in closed-form (unlike the Gaussian).

The logistic distribution takes a scale factor s, which controls its width:

l (x; s) =
e� x=s

s(1 + e � x=s)2
:

The implementation is straightforward, though it is worth tak ing the absolute
value of x to avoid numerical instability for when the ratio x=s is relatively
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Figure 1.15: Plot of �( p; h) For p = 1 . As h varies from� 1 to 1, we can see that the range of
orientations� for the specularly transmitted ray varies rapidly. By examining the range of� values, we can
see that the possible transmitted directions cover roughly2=3 of all possible directions on the circle.

large. (The function is symmetric around the origin, so this is mathematically
equivalent.)

hHair Local Functions i �
inline Float Logistic(Float x, Float s) {

x = std::abs(x);

return std::exp(-x / s) / (s * Sqr(1 + std::exp(-x / s)));

}

Because the logistic distribution is normalized, it is its own PDF. Its integral is
reasonably straightforward:

Z
l(x; s) dx =

1

1 + e� x=s
; (1 .5)

and the function that implements its CDF follows directly.

hHair Local Functions i �
inline Float LogisticCDF(Float x, Float s) {

return 1 / (1 + std::exp(-x / s));

}

In the following, we'll �nd it useful to de�ne a normalized log istic function over
a range [a; b]; we'll call this the trimmed logistic, l t . (In practice, we'll always use
the range [� �; � ], but will derive the next few functions for arbitrary range s for

exibility.)

l t (x; s; [a; b]) =
l(x; s)

Rb
a l (x0; s) dx0

:

The implementation follows directly using Equation (1.5). Figure 1.16 shows plots
of the trimmed logistic distribution for a few values of s.
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Figure 1.16: Plots of The Trimmed Logistic Function Over � � . The curve fors = 0 :5 (solid line) is
broad and 
at, while ats = 0 :1 (dashed line), the curve is peaked. Because the function is normalized, the
peak at 0 generally doesn't have the value 1, unlike the Gaussian.

hHair Local Functions i �
inline Float TrimmedLogistic(Float x, Float s, Float a, Flo at b) {

return Logistic(x, s) / (LogisticCDF(b, s) - LogisticCDF(a , s));

}

Now we have the pieces to be able to implement the azimuthal scattering
distribution. The Np() function computes the Np term, computing the angular
di�erence between � and �( p; h) and evaluating the azimuthal distribution with
that angle.

hHair Local Functions i �
inline Float Np(Float phi, int p, Float s, Float gammaO,

Float gammaT) {

Float dphi = phi - Phi(p, gammaO, gammaT);

hRemap dphi to [� �; � ]i
return TrimmedLogistic(dphi, s, -Pi, Pi);

}

The di�erence between� and �( p; h) may be outside the range we've de�ned the
logistic over, [� �; � ], so we rotate around the circle as needed to get the value to
the right range. Becausedphi never gets too far out of range for the smallp used
here, we just use the simple approach of adding or subtracting2� as needed.

hRemap dphi to [� �; � ]i �
while (dphi > Pi) dphi -= 2 * Pi;

while (dphi < -Pi) dphi += 2 * Pi;

As with the longitudinal roughness, it's helpful to have a roughly perceptually
linear mapping from azimuthal roughness� n 2 [0; 1] to the logistic scale factors.

hCompute azimuthal logistic scale factor from� ni �
s = SqrtPiOver8 * (0.265f * beta_n + 1.194f * Sqr(beta_n) +

5.372f * Pow<22>(beta_n));
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Figure 1.17: Polar plots ofNp for p = 1 with a low roughness,� n = 0 :1, for h = � 0:5 (left) and h = 0 :3
(right). We can see thatNp varies rapidly over the width of the hair.

The mapping uses the constant
p

�= 8.

hHairBSDF Constantsi �
static const Float SqrtPiOver8 = 0.626657069f;

hHairBSDF Private Data i �
Float s;

Figure 1.17 shows polar plots of azimuthal scattering for the TT term, p = 1, with
a fairly low roughness. The scattering distributions for the two di�erent points
on the curve's width are quite di�erent. Because we expect the hair width to be
roughly pixel-sized, many rays per pixel are needed to resolve this variation well.

Figure 1.18 shows renderings of the hair model from Figure 1.1with a �xed
longitudinal roughness and varying azimuthal roughness. We can see that higher
azimuthal roughness causes the hair to be lighter in color; this is because more
light is able to exit the hair after multiple scattering when the distribution is
broader.

1.3.4 SCATTERING MODEL IMPLEMENTATION

We now have almost all of the pieces we need to be able to evaluate the model.
The last detail is to account for the e�ect of scales on the hair surface (recall
Figure 1.6). Suitable adjustments to � i work well to model this characteristic of
hair.

For the R term, adding the angle 2� to � i can model the e�ect of evaluating
the hair scattering model with respect to the surface normal ofa scale. We can
then go ahead and evaluateM 0 with this modi�cation to � i. For TT, we have
to account for two transmission events through scales. Rotating by � in the
opposite direction approximately compensates. (Because therefraction angle is
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Figure 1.18: Hair Rendered With Varying Azimuthal Roughness. Top � n = 0 :3, middle: � n = 0 :6,
and bottom: � n = 0 :9. In all cases,� m = 0 :3. As the longitudinal roughness increases, the hair lightens, as
more multiply-scattered light can exit the hair volume.(Hair geometry courtesy Cem Yuksel.)
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Figure 1.19: The E�ect of Scales on Hair. (a) Hair rendered without modeling scales on the hair
surface, � = 0 . (b) With � = 2 � , the specular highlights from thep = 0 term (white) and p = 2 (hair
colored) are distinct, and we can now see a secondary hair-colored highlight below the white highlight.
(Hair geometry courtesy Cem Yuksel.)

non-linear with respect to changes in normal orientation, there is some error in
this approximation, though the error is low for the typical case of small values
of � .) TRT has a re
ection term inside the hair; a rotation by � 4� compensates
for the overall e�ect.

The e�ects of these shifts are that the primary re
ection lobe R is o�set to be
above the perfect specular direction and the secondary TRT lobe is shifted below
it. Together, these lead to two distinct specular highlights of di�erent colors,
since R isn't a�ected by the hair's color, while TRT picks up t he hair color due
to absorption. This e�ect can be seen in human hair. Figure 1.19 shows the visual
result of accounting for the tilted scales.

To support computing these o�sets, in the HairBSDFconstructor we precompute
sin 2k� and cos 2k� for k = 0 ; 1; 2. These values can be computed particularly
e�ciently using trigonometric double angle identities: cos 2� = cos2 � � sin2 � and
sin 2� = 2 cos � sin � .

hCompute � terms for hair scalesi �
sin2kAlpha[0] = std::sin(alpha);

cos2kAlpha[0] = SafeSqrt(1 - Sqr(sin2kAlpha[0]));

for (int i = 1; i < 3; ++i) {

sin2kAlpha[i] = 2 * cos2kAlpha[i - 1] * sin2kAlpha[i - 1];

cos2kAlpha[i] = Sqr(cos2kAlpha[i - 1]) - Sqr(sin2kAlpha[i - 1]);

}

hHairBSDF Private Data i �
Float sin2kAlpha[3], cos2kAlpha[3];
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Evaluating the model is now mostly just a matter of calling functions that have
already been de�ned and summing the individual termsf p.

hEvaluate hair BSDFi �
Float phi = phiI - phiO;

std::array<Spectrum, pMax + 1> ap = Ap(cosThetaO, eta, h, T) ;

Spectrum fsum(0.);

for (int p = 0; p < pMax; ++p) {

hCompute sin � i and cos � i terms accounting for scalesi
fsum += Mp(cosThetaIp, cosThetaO, sinThetaIp, sinThetaO, v[p]) * ap[p] *

Np(phi, p, s, gammaO, gammaT);

}

hCompute contribution of remaining terms after pMaxi
if (AbsCosTheta(wi) > 0) fsum /= AbsCosTheta(wi);

return fsum;

As discussed earlier,� i is rotated to model the e�ect of hair scales. Fortunately
we only need the sine and cosine of the angle� i to evaluate M p. We can therefore
use the trigonometric identities

sin � � � = sin � cos� � cos� sin �
cos� � � = cos � cos� � sin � sin �

to e�ciently compute the rotated angle, without needing to eva luate any addi-
tional trigonometric functions.

Here we only include the case forp = 0, where � i is rotated by 2� . The remaining
cases follow the same structure. (Forp = 1, the rotation is by � � and for p = 2,
� 4� .)

hCompute sin � i and cos� i terms accounting for scalesi �
Float sinThetaIp, cosThetaIp;

if (p == 0) {

sinThetaIp = sinThetaI * cos2kAlpha[1] + cosThetaI * sin2kA lpha[1];

cosThetaIp = cosThetaI * cos2kAlpha[1] - sinThetaI * sin2kA lpha[1];

}

hHandle remainder of p values for hair scale tilti
hHandle out-of-rangecos � i from scale adjustmenti

When ! i is nearly parallel with the hair, the scale adjustment may givea slightly
negative value for cos� i|e�ectively, in this case, it represents a � i that is slightly
greater than �= 2, the maximum expected value of� in the hair coordinate system.
This angle is equivalent to� � � i, and cos(� � � i) = jcos� i j, so we can easily handle
that here.

hHandle out-of-rangecos� i from scale adjustmenti �
cosThetaIp = std::abs(cosThetaIp);

A �nal term accounts for all higher-order scattering inside the hair. We just
use a uniform distribution N (� ) = 1 =(2� ) for the azimuthal distribution; this
is a reasonable choice, as the varied direction o�sets from �(p; h) for p � pmax
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generally have wide variation and the �nal Ap term generally represents less than
15% of the overall scattering, so little error is introducedin the �nal result.

hCompute contribution of remaining terms after pMaxi �
fsum += Mp(cosThetaI, cosThetaO, sinThetaI, sinThetaO, v[ pMax]) *

ap[pMax] / (2.f * Pi);

1.3.5 THE \WHITE FURNACE" TEST

We have, we hope, implemented a hair scattering model wherein ifhair doesn't
absorb any of the light passing through it (i.e., � a = 0), then all of the incident
light should be re
ected. If such a hair is illuminated with un iform incident
radiance, the re
ected radiance should be exactly the same asthe incident
radiance. Thewhite furnace testchecks this, making sure that re
ected radiance is
one given unit incident radiance. Our implementation tests a variety of azimuthal
and longitudinal roughnesses.

hHair Tests i �
TEST(Hair, WhiteFurnace) {

RNG rng;

Vector3f wo = UniformSampleSphere({rng.UniformFloat(),

rng.UniformFloat()});

for (Float beta_m = .1; beta_m < 1; beta_m += .2) {

for (Float beta_n = .1; beta_n < 1; beta_n += .2) {

hEstimate re
ected uniform incident radiance from hair i
}

}

}

For each roughness, we compute a Monte Carlo estimate of the spherical{
directional re
ectance,

Z

S2
f (! o; ! i) jcos� i j d! i:

Each sample is evaluated by �rst sampling a random o�set along the hair h and
then computing the fraction of re
ected radiance for a random incident direction.

hEstimate re
ected uniform incident radiance from hair i �
Spectrum sum = 0.f;

int count = 300000;

for (int i = 0; i < count; ++i) {

Float h = -1 + 2. * rng.UniformFloat();

Spectrum sigma_a = 0.f;

HairBSDF hair(h, 1.55, sigma_a, beta_m, beta_n, 0.f);

Vector3f wi = UniformSampleSphere({rng.UniformFloat(),

rng.UniformFloat()});

sum += hair.f(wo, wi) * AbsCosTheta(wi);

}

Float avg = sum.y() / (count * UniformSpherePdf());

EXPECT_TRUE(avg >= .95 && avg <= 1.05);
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The WhiteFurnaceSampled test, not included here, uses theSample_f() method
(which will be de�ned shortly) to sample incident directions rather than a uniform
distribution, dividing BSDF values by the PDF to compute the e stimate of
re
ectance. It uses a tighter tolerance (1� :01) than the �rst white furnace test,
since importance sampling gives much faster convergence thanuniform sampling
over the sphere. (Note, however, that it's useful to have both variants of this test:
if there was a bug in the importance sampling code and the secondwhite furnace
test failed, we wouldn't know whether the bug was in the sampling code or how
the hair BSDF computed re
ection. This way, if one white furna ce test fails or
both fail, we can have a better idea of whether the underlyingproblem is in the
evaluation of the model or in the code that samples it.)

1.4 IMPORTANCE SAMPLING

Being able to generate sampled directions and compute the PDF for sampling
a given direction according to a distribution that is similar to the overall BSDF
is critical for e�cient rendering, especially at low roughnesses, where the hair
BSDF varies rapidly as a function of direction. In the approach implemented
here, samples are generated with a two step process: �rst we choose ap term to
sample according to a probability based on each term'sAp function value, which
gives its contribution to the overall scattering function. Then, we �nd a direction
by sampling the correspondingM p and Np terms. Fortunately, both the M p and
Np terms of the hair BSDF can be sampled perfectly, leaving us witha sampling
scheme that exactly matches the PDF of the full BSDF.

1.4.1 COMPUTING ADDITIONAL SAMPLE VALUES

In the following, we'll need a total of four random samples to sample the direction
wi . This presents a challenge in that only two sample values are passed intopbrt 's
BxDF::Sample_f() interface. One option would be to modify the interfaces to
provide more sample values, though these would be unused by allof the other BxDF
implementations; rendering e�ciency would su�er from the time t o generate these
unused samples, and rendering quality would also likely su�er, as many Samplers
generate better samples in the lower dimensions than in higherdimensions; these
extra samples would usually be wasted.

Therefore, here we'll implement an approach that lets us extract two separate
samples from each provided sample. TheDemuxFloat() function, to be de�ned
shortly, decomposes a sample� 2 [0; 1) into a pair of samples, while also making
some e�ort to preserve strati�cation in the returned sample value.

To understand the operation of DemuxFloat() , �rst recall the discussion of the
Morton curve in Section 4.3.3. The Morton curve is a space-�lling 1D curve that
maps real numbers in [0; 1] to n-dimensional numbers [0; 1]n. If we use a 1D sample
value � as an o�set into a Morton curve, we can use each of the dimensions' values
as independent samples.
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An important advantage of using a Morton curve for this task is that it preserves
strati�cation in the sample values it returns. To see why this is so, consider
a collection of four strati�ed 1D sample values (i.e., one in [0; 1=4), one in
[1=4; 1=2), and so forth.) The �rst sample value will be mapped mapped to a
point in [0; 1=2) � [0; 1=2) by the Morton curve, since the �rst quarter of the 2D
Morton curve traces out that region of space in two dimensions. Similarly, the
next strati�ed 1D sample will be in the range [1=2; 1) � [0; 1=2), and so on.

To help with this, the Compact1By1() function takes a 32-bit integer, deletes all of
the bits with odd indices, and compacts the remaining bits. Thecomment lines
in the implementation illustrate the e�ect of each operation: after the surviving
bits are initially masked o�, a series of masked shifts compactsthem until they
are in contiguous positions.4

hGeneral Utility Functions i �
static uint32_t Compact1By1(uint32_t x) {

// x = -f-e -d-c -b-a -9-8 -7-6 -5-4 -3-2 -1-0

x &= 0x55555555;

// x = --fe --dc --ba --98 --76 --54 --32 --10

x = (x ^ (x >> 1)) & 0x33333333;

// x = ---- fedc ---- ba98 ---- 7654 ---- 3210

x = (x ^ (x >> 2)) & 0x0f0f0f0f;

// x = ---- ---- fedc ba98 ---- ---- 7654 3210

x = (x ^ (x >> 4)) & 0x00ff00ff;

// x = ---- ---- ---- ---- fedc ba98 7654 3210

x = (x ^ (x >> 8)) & 0x0000ffff;

return x;

}

Here, we'll treat the sample � as a �xed-point value v computed by multiplying
by 232. The 2D Morton curve e�ectively takes alternating bits from this value,
giving two values between 0 and 216. In turn, these are mapped back toFloat s.

hGeneral Utility Functions i �
static Point2f DemuxFloat(Float f) {

uint64_t v = f * (1ull << 32);

uint32_t bits[2] = {Compact1By1(v), Compact1By1(v >> 1)};

return {bits[0] / Float(1 << 16), bits[1] / Float(1 << 16)};

}

1.4.2 A DISTRIBUTION FOR SAMPLING P

Next, we'll de�ne the ComputeApPdf() method, which returns a discrete PDF with
probabilities for sampling each term Ap according to its contribution relative to
all of the Ap terms, given � o.

4 This code is thanks to Fabian Giesen,fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/ .
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hHairBSDF Method De�nitions i �
std::array<Float, pMax + 1> HairBSDF::ComputeApPdf(Floa t cosThetaO) const {

hCompute array of Ap values for cosThetaOi
hCompute Ap PDF from individual Ap termsi
return apPdf;

}

The method starts by computing the values ofAp for cosThetaO. We're able to
reuse some previously-de�ned fragments to make this task easier.

hCompute array of Ap values for cosThetaOi �
Float sinThetaO = SafeSqrt(1 - cosThetaO * cosThetaO);

hCompute cos � t for refracted ray i
hCompute 
 t for refracted ray i
hCompute the transmittanceT of a single path through the cylinderi
std::array<Spectrum, pMax + 1> ap = Ap(cosThetaO, eta, h, T) ;

Next, the spectral Ap values are converted to scalars using their luminance and
these values are normalized to make a proper PDF.

hCompute Ap PDF from individual Ap termsi �
std::array<Float, pMax + 1> apPdf;

Float sumY = std::accumulate(ap.begin(), ap.end(), Float (0),

[](Float s, const Spectrum &ap) { return s + ap.y(); });

for (int i = 0; i <= pMax; ++i)

apPdf[i] = ap[i].y() / sumY;

1.4.3 SAMPLING INCIDENT DIRECTIONS

With these preliminaries out of the way, we can now implement theSample_f()
method.

hHairBSDF Method De�nitions i �
Spectrum HairBSDF::Sample_f(const Vector3f &wo, Vector3 f *wi,

const Point2f &u2, Float *pdf, BxDFType *sampledType) cons t {

hCompute hair coordinate system terms related towoi
hDerive four random samples fromu2i
hDetermine which term p to sample for hair scatteringi
hSampleM p to compute � i i
hSampleNp to compute � � i
hCompute wi from sampled hair scattering anglesi
hCompute PDF for sampled hair scattering directionwi i
return f(wo, *wi);

}

hDerive four random samples fromu2i �
Point2f u[2] = { DemuxFloat(u2[0]), DemuxFloat(u2[1]) };

Given the PDF over Ap terms, we just loop over PDF values until we �nd the �rst
value ofp where the sum of preceding PDF values is greater than the sample value.
Because we only need to generate one sample from the PDF's distribution, the
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work to compute an explicit CDF array (for example, by using Distribution1D )
isn't worthwhile.

hDetermine which term p to sample for hair scatteringi �
std::array<Float, pMax + 1> apPdf = ComputeApPdf(cosTheta O);

int p;

for (p = 0; p < pMax; ++p) {

if (u[0][0] < apPdf[p]) break;

u[0][0] -= apPdf[p];

}

Now that we've chosen a term, we can sample the correspondingM p term given � o
to �nd � i. The derivation of this sampling method is fairly involved, so we'll nei-
ther include the derivation nor the implementation here. This fragment, hSample
M p to compute � i i , consumes both of the sample valuesu[1][0] and u[1][1]
and initializes variables sinThetaI and cosThetaI according to the sampled di-
rection. After sampling a direction � i, this fragment then applies the inverse of
the rotation that will later be used to account for hair scales when the BSDF is
evaluated.

Next we'll sample the azimuthal distribution Np. For terms up to pmax, we take
a sample from the logistic distribution centered around the exit direction given
by �( p; h). For the last term, we sample from a uniform distribution.

hSampleNp to compute � � i �
hCompute 
 t for refracted ray i
Float dphi;

if (p < pMax)

dphi = Phi(p, gammaO, gammaT) +

SampleTrimmedLogistic(u[0][1], s, -Pi, Pi);

else

dphi = 2 * Pi * u[0][1];

By inverting the CDF of the trimmed logistic, we can derive the recipe to sample
from its distribution given a random variable � 2 [0; 1):

� =
Z x

a
l t (x0; s; [a; b]) dx0

=
1

Rb
a l (x; s) dx

Z x

a
l (x0; s) dx0

=
1

Rb
a l (x; s) dx

�
1

1 + e� x=s
�

1

1 + e� a=s

�
:

With a bit of algebra, we can solve forx:

x = � s log

0

@ 1

�
Rb

a l (x; s) dx + 1
1+e� a=s

� 1

1

A :
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In practice, due to 
oating-point round-o�, the implementati on may compute an
in�nite value when � ! 1; a clamp at the end ensures that the returned value is
in the range [a; b].

hHair Local Functions i �
static Float SampleTrimmedLogistic(Float u, Float s, Floa t a,

Float b) {

Float k = LogisticCDF(b, s) - LogisticCDF(a, s);

Float x = -s * std::log(1 / (u * k + LogisticCDF(a, s)) - 1);

return Clamp(x, a, b);

}

Given � i and � i, we can compute the sampled directionwi . The math is similar
to the SphericalDirection() function de�ned on p. 346, but with two impor-
tant di�erences. First, because here � is measured with respect to the plane
perpendicular to the cylinder rather than the cylinder axis, we need to compute
cos(�= 2 � � ) = sin � for the coordinate with respect to the cylinder axis instead
of cos� . Second, because the hair shading coordinate system's (�; � ) coordinates
are oriented with respect to the +x axis, the order of dimensions passed to the
Vector3f constructor is adjusted correspondingly, since the direction returned
from Sample_f() should be in the BSDF coordinate system.

hCompute wi from sampled hair scattering anglesi �
Float phiI = phiO + dphi;

*wi = Vector3f(sinThetaI, cosThetaI * std::cos(phiI),

cosThetaI * std::sin(phiI));

Because we could sample directly from theM p and Np distributions, the overall
PDF is

pmaxX

p=0

M p(� o; � i) ~Ap(! o)Np(� );

where ~Ap are the normalized luminance-weighted PDF terms. Note that� i must
be shifted to account for hair scales when evaluating the PDF; this is done in the
same way (and with the same code fragment) as when the BSDF was evaluated.

hCompute PDF for sampled hair scattering directionwi i �
*pdf = 0;

for (int p = 0; p < pMax; ++p) {

hCompute sin � i and cos � i terms accounting for scalesi
*pdf += Mp(cosThetaIp, cosThetaO, sinThetaIp, sinThetaO, v[p]) *

apPdf[p] * Np(dphi, p, s, gammaO, gammaT);

}

*pdf += Mp(cosThetaI, cosThetaO, sinThetaI, sinThetaO, v[ pMax]) *

apPdf[pMax] * (1 / (2 * Pi));

The HairBSDF::Pdf() method performs the same computation was we just imple-
mented for Sample_f() . Therefore, the implementation isn't included here.
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1.4.4 TESTING SAMPLING ROUTINES

Because the sampling routine we have implemented exactly matches the PDF of
the underlying BSDF, if we generate samples from the BSDF using Sample_f() ,
then the ratio between the BSDF value and the PDF computed for this direction
should be one (as long as there is no absorption in the hair). The SamplingWeights
test checks this for a variety of roughnesses and random sample values.

hHair Tests i �
TEST(Hair, SamplingWeights) {

RNG rng;

for (Float beta_m = .1; beta_m < 1; beta_m += .2)

for (Float beta_n = .4; beta_n < 1; beta_n += .2) {

int count = 10000;

for (int i = 0; i < count; ++i) {

hCheckHairBSDF::Sample_f() sample weighti
}

}

}

Performing the test is mostly a matter of setting up enough context to call Sample_
f() and then verifying the ratio of the BSDF and the PDF.

hCheckHairBSDF::Sample_f() sample weighti �
Float h = -1 + 2 * rng.UniformFloat();

Spectrum sigma_a = 0;

HairBSDF hair(h, 1.55, sigma_a, beta_m, beta_n, 0.f);

Vector3f wo = UniformSampleSphere({rng.UniformFloat(), rng.UniformFloat()});

Vector3f wi;

Float pdf;

Point2f u = {rng.UniformFloat(), rng.UniformFloat()};

Spectrum f = hair.Sample_f(wo, &wi, u, &pdf, nullptr);

if (pdf > 0) {

hVerify that hair BSDF sample weight is close to 1 forwi i
}

Note that we accept a small amount of error, accepting values that are close to
one but not exactly equal to it, in order to allow for 
oating- point round-o� error.

hVerify that hair BSDF sample weight is close to 1 forwi i �
EXPECT_GT(f.y() * AbsCosTheta(wi) / pdf, 0.999);

EXPECT_LT(f.y() * AbsCosTheta(wi) / pdf, 1.001);

Another useful test is based on computing re
ected radiance from a varying
incident radiance function with the scattering equation, Equation (5.9) in the
third edition. Given a su�cient number of samples, we should get the same result
both if we use the custom importance sampling scheme we have implemented and
if we use a uniform distribution of directions over the unit sphere. This case is
tested with the SamplingConsistency test.
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hHair Tests i �
TEST(Hair, SamplingConsistency) {

RNG rng;

for (Float beta_m = .2; beta_m < 1; beta_m += .2)

for (Float beta_n = .4; beta_n < 1; beta_n += .2) {

hDeclare variables for hair sampling testi
for (int i = 0; i < count; ++i) {

hCompute estimates of scattered radiance for hair sampling testi
}

hVerify consistency of estimated hair re
ected radiance valuesi
}

}

The Li lambda function de�nes an incident radiance function with some (but not
too much) variation as a function of direction. We keep this function fairly simple
so that sampling the BSDF alone works well to compute re
ected radiance and
we can avoid the complexity of implementing multiple importance sampling in
the test here.

hDeclare variables for hair sampling testi �
const int count = 64*1024;

Spectrum sigma_a = .25;

Vector3f wo = UniformSampleSphere({rng.UniformFloat(), rng.UniformFloat()});

auto Li = [](const Vector3f &w) -> Spectrum {

return w.z * w.z;

};

Spectrum fImportance = 0, fUniform = 0;

For each sample in the Monte Carlo estimate, we choose a random point on the
hair and use a pair of random numbers to sample an incident direction. We then
use the regular Monte Carlo estimator to compute estimates using both sampling
approaches.

hCompute estimates of scattered radiance for hair sampling test i �
Float h = -1 + 2 * rng.UniformFloat();

HairBSDF hair(h, 1.55, sigma_a, beta_m, beta_n, 0.f);

Vector3f wi;

Float pdf;

Point2f u = {rng.UniformFloat(), rng.UniformFloat()};

Spectrum f = hair.Sample_f(wo, &wi, u, &pdf, nullptr);

if (pdf > 0) fImportance += f * Li(wi) * AbsCosTheta(wi) / (cou nt * pdf);

wi = UniformSampleSphere(u);

fUniform += hair.f(wo, wi) * Li(wi) * AbsCosTheta(wi) /

(count * UniformSpherePdf());

In the end, the two estimates should be very close. Here we treat 5% relative
error as good enough to pass the test; this is a fairly low bar,but it allows the
test to run quickly|if the total number of samples count was higher, we could
expect closer agreement, but we prefer to have a test that runsin a second or so.
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hVerify consistency of estimated hair re
ected radiance valuesi �
Float err = std::abs(fImportance.y() - fUniform.y()) / fUn iform.y();

EXPECT_LT(err, 0.05);

1.5 HAIR ABSORPTION COEFFICIENTS

The color of hair is determined by how pigments in the cortex absorb light, which
in turn is described by the normalized absorption coe�cient where distance is
measured in terms of the hair diameter. If a speci�c hair color isdesired, there's
a non-obvious relationship between the normalized absorption coe�cient and the
color of hair in a rendered image. Not only does changing the spectral values of
the absorption coe�cient have an unpredictable connection to the appearance of
a single hair, but as we saw in Figure 1.2, multiple scattering between collections
of many hairs has a signi�cant e�ect each one's apparent color.5 Therefore, here
we provide implementations of two more intuitive ways to specify hair color.

The color of human hair is determined by the concentration of two pigments.
The concentration of eumelanin is the primary factor that causes the di�erence
between black, brown, and blonde hair. (Black hair has the most eumelanin
and blonde hair has the least. White hair has none.) The second pigment,
pheomelanin, causes hair to be orange or red. TheHairBSDF class provides a
convenience method that computes an absorption coe�cient using the product of
user-supplied pigment concentrations and absorption coe�cients of the pigments
computed by d'Eon et al. (2011), based on a model by Donner and Jensen (2006).

hHairBSDF Method De�nitions i �
Spectrum HairBSDF::SigmaAFromConcentration(Float ce, F loat cp) {

Float sigma_a[3];

Float eumelaninSigmaA[3] = {0.419f, 0.697f, 1.37f};

Float pheomelaninSigmaA[3] = {0.187f, 0.4f, 1.05f};

for (int i = 0; i < 3; ++i)

sigma_a[i] = (ce * eumelaninSigmaA[i] +

cp * pheomelaninSigmaA[i]);

return Spectrum::FromRGB(sigma_a);

}

Eumelanin concentrations of roughly 8, 1.3, and 0.3 give reasonable representa-
tions of black, brown, and blonde hair, respectively.

It's also useful to specify the desired hair color directly.In order to make this
possible, Chiang et al. (2016) created a cube of hair and rendered it with
a variety of absorption coe�cients and roughnesses, while it was illuminated
with a uniform white dome. They then �t a function that mapped fr om the
hair's azimuthal roughness and average color at the center of the front face

5 These issues are both related to those that make it di�cult todirectly set scattering and absorption coe�cients for subsurface scattering, as

discussed along with theSubsurfaceFromDiffuse() function de�ned on p. 938.
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Figure 1.20: Two Spheres With Di�use BSDFs Next To \Hair Cubes". The cubes are
made of 100� 100 densely packedCurves, with hair absorption coe�cients computed using
SigmaAFromReflectance() . Top, a RGB color of(0:8; 0:4; 0:05) and a longitudinal roughness� n
of 0:3 was used; the computed� a value was(0:003; 0:046; 0:488). Below, RGB was(0:2; 0:8; 0:3) and
� n = 0 :8, giving a � a value of(0:141; 0:003; 0:079). In both cases, there is good agreement between the
color of the sphere and the hair.

of the cube to an absorption coe�cient. (Unlike the azimuthal roughness, the
longitudinal roughness doesn't meaningfully a�ect the hair's color.) This function
is implemented in the SigmaAFromReflectance() method; see Figure 1.20 for
examples.

hHairBSDF Method De�nitions i �
Spectrum HairBSDF::SigmaAFromReflectance(const Spectr um &c, Float beta_n) {

Spectrum sigma_a;

for (int i = 0; i < Spectrum::nSamples; ++i)

sigma_a[i] = Sqr(std::log(c[i]) /

(5.969f - 0.215f * beta_n + 2.532f * Sqr(beta_n) -

10.73f * Pow<3>(beta_n) + 5.574f * Pow<4>(beta_n) +

0.245f * Pow<5>(beta_n)));

return sigma_a;

}

1.6 HAIR MATERIAL

Like most Material s in pbrt , the HairMaterial is pretty straightforward; it's
mostly a matter of evaluating textures and creating a corresponding HairBSDF
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object. It allows the attenuation coe�cient for the hair inte rior to be speci�ed
with one of three ways; the corresponding parameters are:

� \spectrum sigma a": the absorption coe�cient can be speci�ed directly.
� \spectrum re
ectance": a re
ectance for SigmaAFromReflectance() .
� \
oat eumelanin" and/or \
oat pheomelanin": eumelanin and phe omelanin

concentrations.

Only one of these approaches can be used; an error is issued ifmore than one is
provided. If none is speci�ed, an eumelanin concentration of1.3 is used, giving a
brownish color.

A few additional parameter are supported

� \
oat beta m", \
oat beta n": longitudinal and azimuthal roughnesses.
Both default to 0.3.

� \
oat eta": index of refraction of the hair interior. (1.55 b y default).
� \
oat alpha": hair scale angle in degrees (2 by default).

1.7 A NOTE ON RECIPROCITY

On p. 350 in the third edition of Physically Based Rendering, we noted that
physically-based BRDFs are both reciprocal and energy conserving. (In particu-
lar, reciprocity means that swapping the two evaluation directions gives the same
BRDF value: f (! o; ! i) = f (! i; ! o).) BTDFs are in general not reciprocal, how-
ever; this topic (and methods to address it) is discussed further on p. 960 when
bidirectional light transport algorithms are introduced.

The model we have implemented is, unfortunately, not reciprocal. One immediate
issue is that the rotation for hair scales is applied only to� i. However, there are
more problems: �rst, all terms p > 0 that involve transmission are not reciprocal;
the underlying issue is that the transmission terms use valuesbased on! t , which
itself only depends on ! o. Thus, if ! o and ! i are interchanged, a completely
di�erent ! t is computed, which in turn leads to di�erent cos � t and 
 t values,
which in turn give di�erent values from the Ap and Np functions.

Many earlier hair scattering models have worked around the lack of reciprocity
due to cos� t by computing an angle � d = ( � o � � i)=2 and using that in place of
� o when computing � t and related quantities. (Note that � d is symmetric, since
it's measuring angles with respect to the normal plane.) We didn't use � d in our
implementation for two reasons: �rst, when we're sampling the BSDF, only ! o
is known and thus � d can't be computed. In turn, � o must be used to generate
the PDF of Ap terms. Later, when ! i is known and the BSDF is evaluated,
a di�erent value of Ap would be computed than was used for sampling. This
mismatch between function value and PDF can cause a variance spike.6

6 Previous approaches have addressed this issue by clampingthe maximum ratio of function value and PDF, though doing so loses energy.
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Second, even if� d is used, there is a second, subtle and more di�cult, source
of non-reciprocity. Recall that the position h along the curve width is computed
based on �nding the intersection of a ray with a ribbon oriented to face the ray.
It is thus directly dependent on ! o and independent of ! i. In turn, because 
 o
and 
 t depend onh, they depend on! o alone and thus reciprocity is lost. The
models developed by Marschner et al. (2003) and d'Eon et al. (2011) didn't have
this problem since both computed a BCSDF by integrating h across the curve
width. As noted by Chiang et al. (2016), this integration is computationally
expensive, especially with low azimuthal roughnesses where the function varies
quickly and many evaluations are needed for deterministic quadrature methods
(recall Figure 1.17).

Another option would be to integrate stochastically, sampling a random h. (In
turn, any given evaluation of f wouldn't be reciprocal, but the expected value
over a sum of many evaluations would be.) This approach doesn't �t well with
pbrt 's current architecture, where no random sample values are made available
to the BSDF::f() method. Changing this would require a fairly extensive set of
code modi�cations and seems generally unappealing.

A �nal possibility would be to compute a hi for ! i, based on projecting the
intersection point up to the surface of the cylinder and then �nding hi for a ray
with direction ! i that passes through the hit point. In turn, we could evaluate
Ap and Np twice for each ordering of directions and take the average. This is
relatively straightforward (and hi can be found working entirely in the azimuthal
plane), but in turn may lead to noise spikes, as one of the evaluations may have
a much larger value than the current implementations of the sampling and PDF
methods expect.

Stuck for an elegant solution, we will leave this issue to an exercise and hope that
future research on this topic addresses this issue. In practice, we haven't seen
visual artifacts in rendered images from the lack of reciprocity.

1.8 FURTHER READING

Kajiya and Kay (1989) were the �rst to develop a hair scattering model for
rendering. Their model combined a di�use term with a Phong lobe for an
empirical model of specular highlights.

Marschner et al. (2003) investigated the processes underlying scattering from hair
and performed a variety of measurements of scattering from actual hair. They
introduced the longitudinal/azimuthal decomposition and t he use of the modi�ed
index of refraction to hair rendering. They then developed ascattering model
where the longitudinal component was derived by �rst considering perfectly
specular paths and then allowing roughness by centering a Gaussian around them,
and their azimuthal model assumed perfectly specular re
ections. They showed
that this model agreed reasonably well with their measurements.

Zinke and Weber (2007) formalized di�erent ways of modeling scattering from
hair and clari�ed the assumptions underlying each of them. Starting with the
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bidirectional �ber scattering distribution function (BFSDF), which describes
re
ected di�erential radiance at a point on a hair as a fracti on of incident
di�erential power at another, they showed how assuming homogeneous scattering
properties and a far away viewer and illumination made it possible to simplify
the eight-dimensional BFSDF to a four-dimensionalbidirectional curve scattering
distribution (BCSDF).

d'Eon et al. (2011) made a number of improvements to Marschner etal.'s model.
They showed that their M p term wasn't actually energy conserving and derived a
new one that was; this is the model from Equation (1.3) that our implementation
uses. (See also d'Eon (2013) for a more numerically stable formulation of M p for
low roughness.) They also introduced a Gaussian to the azimuthal term, allowing
for varying azimuthal roughness. A 1D quadrature method was used to integrate
the model across the width of the hairh.

Being able to generate samples from a distribution that approximates the BSDF
is important for e�cient rendering. Hery and Ramamoorthi (2012) s howed how
to sample the �rst term of the Marschner et al. model, and d'Eon et al. (2013)
showed how to sample all terms of their improved model. (See also Jakob (2012)
for notes related to sampling their M p term in a numerically stable way.)

d'Eon et al. (2014) performed extensive Monte Carlo simulations of scattering
from dielectric cylinders with explicitly modeled scales and glossy scattering at
the boundary based on a Beckmann microfacet distribution. They showed that
separable models didn't model all of the observed e�ects and that in particular
that the specular term modeled byM p varies over the surface of the cylinder and
also depends on� . They developed a non-separable scattering model, where both
� and � m varied as a function ofh, and showed that it �t their simulations very
accurately.

All of the scattering models we have described so far have beenBCSDFs|they
represent the overall scattering across the entire width ofthe hair in a single
model. Such \far �eld" models assume that both the viewer is far away and that
incident illumination is uniform across the hair's width. In practice, both of these
assumptions are invalid if one is using path tracing to model multiple scattering
inside hair. Two recent models have considered scattering ata single point along
the hair's width, making them more suitable for accurately modeling \near �eld"
scattering.

Yan et al. (2015) generalized d'Eon et al.'s model to account for scattering in
the medulla, modeling a scattering cylinder in the interior of fur. They validated
their model with a variety of measurements of actual animal fur, and showed how
previous hair scattering models didn't match measured fur scattering well. Their
model didn't integrate across the hair width.

Chiang et al. (2016) showed a number of comparisons that eliminating the
integral over width from d'Eon et al.'s model works well in practice, and that the
sampling rates necessary for path tracing also worked well tointegrate scattering
over the curve width, giving a much more e�cient implementation. They also
developed the perceptually-uniform parameterization of� m and � n that we have
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implemented here as well as the inverse mapping from re
ectanceto � a used in
our HairBSDF::SigmaAFromReflectance() method.
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1.11 EXERCISES

1.1 Marschner et al. (2003) note that human hair actually has an elliptical
cross section that causes glints in human hair due to caustics. Extend
the implementation here to handle this case. One issue that you'll need
to address is that the @p=@vreturned by Curve::Intersect() is always
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perpendicular to the incident ray, which leads to di�erent orientations
of the azimuthal coordinate system. This isn't an issue for the model we
have implemented here, since it operates only on the di�erencebetween
angles� in the hair coordinate system. For elliptical hairs, a consistent
azimuthal coordinate system is necessary.

1.2 Ogaki et al. (2010) created an explicit geometric model of the cuticle
surface and then shot a large number of rays at it for each of a set
of discrete outgoing directions, modeling scattering at theboundary
with a microfacet model and modeling absorption and scatteringin
the hair interior. They then created a tabular representation of the
resulting scattering distribution and used it for rendering. Implement
this approach and compare the result to the model here.

1.3 As discussed in \A Note on Reciprocity", the model implemented inthis
document doesn't obey reciprocity. Investigate this issue and derive an
improved model that does.

1.4 Read Yan et al.'s paper on fur scattering (2015) and implement their
model, which accounts from scattering in the medulla in fur. Render
images that show the di�erence from accounting for this in comparison
to the current implementation. You may want to also see Section 4.3
of Chiang et al. (2016), which discusses extensions for modeling the
undercoat (which is shorter and curlier hair underneath the top level)
and a more ad-hoc approach to account for the in
uence of scattering
from the medulla.

1.5 Read the paper by d'Eon et al. (2014) on a non-separable hair scattering
model and implement their approach in pbrt . Render images that show
the di�erence between their approach and the current implementation.

1.12 REVISION HISTORY

October 16, 2016: original version posted.

November 5, 2016: very minor typos �xed.


